تاثیر افزودنی کربناکتیو بر روی ریزساختار و ترکیبات فازی سرامیک کاربید بور زینتر واکنشی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیداحمد بیات 1 * , امید میرزایی 2 , حمیدرضا بهاروندی 3
1 - دانشجوی کارشناسی ارشد مهندسی مواد، دانشکده مهندسی مواد و متالورژی، دانشگاه سمنان، سمنان، ایران
2 - استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه سمنان، سمنان، ایران
3 - دانشیار، مجتمع مواد و فناوریهای ساخت، دانشگاه صنعتی مالک اشتر تهران، تهران، ایران
کلید واژه: پیشفرم متخلخل کاربیدبور, افزودنی کربناکتیو, فلزخورانی و سرامیک RBBC,
چکیده مقاله :
کاربیدبور به دلیل خواصی مانند سختی بالا، مدول الاستیک بالا، چگالی پایین و غیره، بسیار مورد توجه است. با این حال کاربرد آن به علت مشکل در زینتر پذیری و چقرمگیشکست پایین، محدود است. در این تحقیق از روش پرس تک محوری با فشار MPa 140 برای فرآیند ساخت پیش فرمهای متخلخل کاربید بور استفاده گردیده است. مواد اولیه مورد استفاده، پودر B4C با اندازه 43 میکرون، افزودنی کربناکتیو به میزان 0، 5 و10 درصد وزنی و پودر رزین فنولیک به عنوان بایندر و عامل ایجاد تخلخل به میزان 9% وزنی میباشد. عملیات رخنهدهی با مذاب سیلیسیم و تولید سرامیک RBBC در کوره خلأ، در دمای 1600 درجه سانتیگراد انجام شد. در طی فرآیند فلزخورانی، فاز β-SiC تشکیل شده از سیلیسیم و کربن، موجب افزایش دانسیته حجمی و خواص استحکامی نمونهها شد. با افزایش کربناکتیو، مقدار سیلیسیم باقیمانده از 35% حجمی به 18% حجمی کاهش یافته و در مقابل فاز کاربید سیلیسیم ثانویه از 10% حجمی به 21% حجمی افزایش یافته است. کاهش سیلیسیم باقیمانده و افزایش فاز β-SiC توسط نرمافزار آنالیز تصویری مشخص شده است.
Abstract Boron carbide is highly regarded because of many properties such as high hardness, high Young’s modulus, low density and etc. however, application of B4C is rather limited due to difficulties in densification and low fracture toughness. In this research, uniaxial press at constant pressure of 140 MPa was applied to fabrication of boron carbide porous preforms. B4C powder with size of 43µm, activated carbon with the amount of 0,5,10 Wt.% and phenolic resin powder as a binder and Porosity-causing agent with the amount of 9 Wt.%, were used as raw materials. Infiltration operation with molten silicon had performed in vacuum furnace in temperature 1600 °C. β-SiC phase produced from silicon and carbon that caused the volume density and strength properties of specimens during infiltration process. Residual silicon was decreased from 35%.vol to 18 vol.% with increasing activated carbon contents, on the contrary, secondary silicon carbide had increasing continuously from 10%.vol to 2 vol.%. Decreasing in residual silicon and increasing in β-SiC phase determined by Image analysis software.
[1] F. Thevenot, "A review on boron carbide. Key Engineering Materials", Vol. 56, pp. 59-88. 1991.
[2] م. خادمیان، م. سعیدی حیدری، ع. علیزاده و ح. بهاروندی، " بررسی تأثیر دما و زمان بارریزی بر خواص و ریزساختار نانو کامپوزیت آلومینیوم- کاربید بور به روش ریختهگری گردابی". فصلنامه فرآیندهای نوین در مهندسی مواد، 1394.
[3] L. Levin, N. Frage & M. Dariel, "The effect of Ti and TiO2 additions on the pressureless sintering of B4C". Metallurgical and Materials Transactions A, Vol. 30, No. 12, pp. 3201-3210. 1999.
[4] F. Thévenot, "Boron carbide—a comprehensive review". Journal of the European Ceramic Society, Vol. 6, No. 4, pp. 205-225. 1990.
[5] S. Singhal & B. Singh, "Sintering of boron carbide under high pressures and temperatures". Indian Journal of Engineering And Materials Sciences, Vol. 13, No. 2, pp. 129. 2006.
[6] I. G. Talmy & J. A. Zaykoski, "Boron carbide/silicon carbide ceramics". Google Patents. 2000.
[7] H. Y. Jin & et al. "A Study on Reaction Bonded Ceramics Fabricated by Silicon Infiltration to B4C Preforms". In Materials Science Forum. Trans Tech Publ. 2012.
[8] F. H. Gern & R. Kochendörfer, "Liquid silicon infiltration: description of infiltration dynamics and silicon carbide formation". Composites Part A: Applied Science and Manufacturing, Vol. 28, No. 4, pp. 355-364. 1997.
[9] J. Wannasin & M. C. "Flemings, Metal Matrix Composites: Infiltration". Wiley Encyclopedia of Composites.
[10] S. Hayun & et al, "Static and dynamic mechanical properties of infiltrated B 4 C–Si composites". Materials Science and Engineering: A, Vol. 487, No. 1, pp. 405-409. 2008.
[11] P. Chhillar & et al, "The Effect of Si Content on the Properties of B4C‐SiC‐Si Composites. Advances in Ceramic Armor III: Ceramic and Engineering Science Proceedings", Vol. 28, No. 5, pp. 161-167. 2007.
[12] S. Hayun & et al, "The effect of aluminum on the microstructure and phase composition of boron carbide infiltrated with silicon". Materials Chemistry and Physics, Vol. 118, No. 2, pp. 490-495. 2009.
[13] A. Grytsiv & P. Rogl, "Aluminium–Boron–Carbon, in Refractory metal systems". Springer. pp. 10-38. 2009.
[14] R. Arsenault & C. Pande, "Interfaces in metal matrix composites. Scripta Metallurgica", Vol. 18 No. 10, pp. 1131-1134 1984.
[15] A. Mortensen, "Interfacial phenomena in the solidification processing of metal matrix composites". Materials Science and Engineering: A, Vol. 135, pp. 1-11. 1991.
[16] S. Ren & et al, "Effect of calcination process on the properties and microstructure of SiC preform and corresponding SiCp/Al composites synthesis by pressureless infiltration". Materials Science and Engineering: A, Vol. 444, No. 1, pp. 112-119. 2007.
[17] S. Aroati & et al, "Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon". Journal of the European Ceramic Society. Vol. 31, No. 5, pp. 841-845. 2011.
[18] س. ف. رهنمایی، ا. ع. نوربخش، ف. کاظمی و م. جعفری، " تأثیر افزودن آلومینیوم بر ریزساختار و بهبود خواص مکانیکی دیرگدازهای آندالوزیت- کربن- سیلیکون کاربید"، فصلنامه فرآیندهای نوین در مهندسی مواد، 1392.
[19] Z. F. Chen, Y. Su, & Y. B. Cheng, "Formation and Sintering Mechanisms of Reaction Bonded Silicon Carbide-[19] Boron Carbide Composites". Key Engineering Materials, Vol. 352, pp. 207-212. 2007.
[20] R. Olesinski & G." Abbaschian, The C− Si (Carbon-Silicon) system". Journal of Phase Equilibria, Vol. 5, No. 5, pp. 486-489. 1984.
[21] K. A. Trick & T. E. Saliba, "Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite". Carbon, Vol. 33, No. 11, pp. 1509-1515. 1995.
[22] C. Zhang & et al. "The Role of Infiltration Temperature in the Reaction Bonding of Boron Carbide by Silicon Infiltration". Journal of the American Ceramic Society, 2014.
[23] S. Hayun & et al, "Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure". In Journal of Physics: Conference Series. IOP Publishing. 2009.
[24] D. Mallick & et al, "Development of multi-phase B–Si–C ceramic composite by reaction sintering". Ceramics International, Vol. 35, No. 4, pp. 1667-1669. 2009.
[25] R. W. Hertzberg, R. P. Vinci & J. L. "Hertzberg, Deformation and fracture mechanics of engineering materials". Vol. 89. Wiley New York. 1996.
[26] W. D. Callister & D. G. Rethwisch, "Materials science and engineering": An introduction. Vol. 7. Wiley New York. 2007.
_||_