ذوب سطحی و بررسی اثر اندازۀ ذرات و غلظت کاربید تیتانیم بر مورفولوژی کاربیدهای MC در آلیاژسازی فولاد AISI H13 با لیزر پالسی
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدمحمدعلی بوترابی 1 , علی دادو 2 , شهرام خیراندیش 3
1 - دانشگاه علم و صنعت ایران
2 - دانشجوی دکترا، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران
3 - عضو هیأت علمی دانشگاه علم و صنعت ایران
کلید واژه: پوشش کامپوزیتی, ذوب سطحی با لیزر, آلیاژسازی سطحی با لیزر, کاربید MC, مورفولوژی رشد,
چکیده مقاله :
در این پژوهش، ریزساختار حاصل از ذوب سطحی فولاد AISI H13 با لیزر پالسی Nd:YAG مطالعه شد. سپس با آلیاژسازی سطح با پودر TiC، اثر اندازه ذرات و غلظت پودر بر ریزساختار کامپوزیت سطحی بررسی شد. برای این هدف پودر TiC با اندازه ذرات 1 و 45 میکرومتر به صورت لایههایی با ضخامتهای مختلف بر روی سطح فولاد H13 پیشنشانده و سپس فرآیند آلیاژسازی با لیزر انجام شد. نتایج نشان داد که در اثر عملیات ذوب سطحی، یک ساختار متناوب سلولی/دندریتی از عمق به سطح حوضچه مذاب توسعه یافت و شبکهای غنی تر از عناصر آلیاژی در مناطق مرزی سلول/دندریتها تشکیل شد. سرعت سرد شدن در شرایط آزمایش از مرتبه یک میلیون کلوین بر ثانیه تخمین زده شد. با آلیاژسازی سطحی، ذرات پودر اولیه TiC به صورت کامل (پودر 1 میکرومتر) یا جزئی (پودر 45 میکرومتر) در حوضچه مذاب حل شدند و در هنگام سرد شدن، کاربیدهای MC بر پایه کاربید تیتانیم از مذاب رسوب کردند. افزایش ضخامت لایه پیشنشانده موجب متنوعتر شدن مورفولوژی رسوبهای کاربیدی شد. در غلظتهای کمتر TiC در مذاب، اندازه کاربیدهای MC در نمونه آلیاژسازی شده با پودر 45 میکرومتر ظریفتر بود. با افزایش تعداد رسوبها، ساختارهای سلولی/دندریتی فولاد زمینه به دانههای هم محور و شبکه پیوسته مرز سلول/دندریتها نیز به شبکهای ناپیوسته در مرزدانهها تبدیل شد.
In this research, the microstructure of the pulsed laser surface melted AISI H13 tool steel was studied. Then, by laser surface alloying with TiC powder, the effect of particle size and powder concentration on superficial composite microstructure was investigated. For this purpose, TiC powders with particle sizes of 1 micrometer and 45 micrometers in layers of different thicknesses were pre-placed on the surface of H13 steel and then subjected to pulsed laser operation. The results showed that in the surface melting, an intermittent cell/dendritic structure developed from the depth to the surface of the molten pool with a higher concentration of alloying elements in the boundary network. With the selected laser parameters, the cooling rate was estimated at one million K/s. In the surface alloying process, the preplaced TiC particles were completely (fine powders) or a partially (coarse powders) dissolved in the melt pool. During subsequent cooling, TiC-type MC carbides precipitated from the melt. Increasing the thickness of the preplaced layer caused the morphology of carbides to be more diverse. The size of precipitated MC carbides was reduced by decreasing the concentration of TiC powder in the melt pool and increasing the particle size of preplaced TiC powder. As the number of MC carbides increased, the cellular/dendritic structures of the steel matrix replaced by coaxial grains.
[1] N. Ley, S. S. Joshi, B. Zhang, Y. H. Ho, N. B. Dahotre & M. L. Young, “Laser coating of a CrMoTaWZr complex concentrated alloy onto a H13 tool steel die headˮ, Surface and Coatings Technology,Vol. 348, pp. 150-158, 2018.
[2] B. Podgornik, B. Žužek, F. Kafexhiu & V. Leskovšek, “Effect of Si content on wear performance of hot work tool steelˮ, Tribology letters,Vol. 63, pp. 1-10, 2016.
[3] S. Henschel, V. Kietov, F. Deirmina, M. Pellizzari & L. Krüger, “Fracture toughness of a hot work tool steel-TiC composite produced by mechanical milling and spark plasma sinteringˮ, Materials Science and Engineering: A,Vol. 709, pp. 152-159, 2018.
[4] K. H. Lee, S. W. Choi, J. Suh & C. Y. Kang, “Effect of laser power and powder feeding on the microstructure of laser surface alloying hardened H13 steel using SKH51 powderˮ, Materials & Design,Vol. 95, pp. 173-182, 2016.
[5] G. Telasang, J. D. Majumdar, G. Padmanabham & I. Manna, “Structure–property correlation in laser surface treated AISI H13 tool steel for improved mechanical propertiesˮ, Materials Science and Engineering A,Vol. 599, pp. 255-267, 2014.
[6] Y. Yang, D. Dong, Z. Yang, B. Zhang & N. Guo, “Microstructure and wear resistance of TiCN-reinforced Co matrix coatings on tool steelˮ, Materials Science and Technology,Vol. 32, pp. 291-298, 2016.
[7] ع. ا. قادی، ح. ثقفیان و م. سلطانیه، "بررسی تاثیر زیرلایه فولادی بر تشکیل پوششهای کاربیدی کروم و وانادیم با روش نفوذ فعال حرارتی"، فرآیندهای نوین در مهندسی مواد، دورۀ 12، شماره 2، ص. 129-119، 1397.
[8] W. Theisen & M. Karlsohn, “Hot direct extrusion—A novel method to produce abrasion-resistant metal-matrix compositesˮ, Wear,Vol. 263, pp. 896-904, 2007.
[9] Fedrizzi, M. Pellizzari, M. Zadra & E. Marin, “Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particlesˮ, Materials Characterization,Vol. 86, pp. 69-79, 2013.
[10] K. Hilgenberg, K. Behler & K. Steinhoff, “Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiationˮ, Applied Surface Science,Vol. 305, pp. 575-580, 2014.
[11] C. K. Sahoo & M. Masanta, “Effect of pulse laser parameters on TiC reinforced AISI 304 stainless steel composite coating by laser surface engineering processˮ, Optics and Lasers in Engineering,Vol. 67, pp. 36-48, 2015.
[12] S. Zhao, X. Shen, J. Yang, W. Teng & Y. Wang, “Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser meltingˮ, Optics & Laser Technology,Vol. 103, pp. 239-250, 2018.
[13] W. Jiang & P. Molian, “Nanocrystalline TiC powder alloying and glazing of H13 steel using a CO2 laser for improved life of die-casting diesˮ, Surface and Coatings Technology,Vol. 135, pp. 139-149, 2001.
[14] V. Narva, A. Marants & Z. A. Sentyurina, “Thermal treatment of steel-TiC composite materials produced by laser surfacingˮ, Russian Journal of Non-Ferrous Metals,Vol. 56, pp. 63-67, 2015.
[15] T. Yamaguchi, H. Hagino, M. Takemura, Y. Hasegawa, Y. Michiyama & A. Nakahira, “Microstructure of Fe–TiC Composite Surface Layer on Carbon Steel Formed by Laser Alloying Processˮ, Materials transactions,Vol. 54, pp. 1755-1759, 2013.
[16] B. AlMangour & D. Grzesiak, “Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: Influence of starting TiC particle size and volume contentˮ, Materials & Design,Vol. 104, pp. 141-151, 2016.
[17] Rajabi, M. Ghazali & A. Daud, “Effect of second phase morphology on wear resistance of Fe-TiC compositesˮ, Jurnal Tribologi,Vol. 4, pp. 1-9, 2015.
[18] Emamian, M. Alimardani & A. Khajepour, “Effect of cooling rate and laser process parameters on additive manufactured Fe–Ti–C metal matrix composites microstructure and carbide morphologyˮ, Journal of Manufacturing Processes,Vol. 16, pp. 511-517, 2014.
[19] Y. Chen & H. Wang, “Growth morphologies and mechanisms of non-equilibrium solidified MC carbideˮ, Journal of materials research,Vol. 21, pp. 375-379, 2006.
[20] M. Hamedi, M. Torkamany & J. Sabbaghzadeh, “Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatmentˮ, Optics and Lasers in Engineering,Vol. 49, pp. 557-563, 2011.
[21] H. F. El-Labban, E. R. I. Mahmoud & A. Algahtani, “Microstructure, Wear, and Corrosion Characteristics of TiC-Laser Surface Cladding on Low-Carbon Steelˮ, Metallurgical and Materials Transactions B,Vol. 47, pp. 974-982, 2016.
[22] AlMangour, D. Grzesiak & J. M. Yang, “Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser meltingˮ, Materials & Design,Vol. 96, pp. 150-161, 2016.
[23] G. Muvvala, D. P. Karmakar & A. K. Nath, “Online assessment of TiC decomposition in laser cladding of metal matrix composite coatingˮ, Materials & Design,Vol. 121, pp. 310-320, 2017.
[24] E. Assuncao, S. Williams & D. Yapp, “Interaction time and beam diameter effects on the conduction mode limitˮ, Optics and Lasers in Engineering,Vol. 50, pp. 823-828, 2012.
[25] م. ربانی خواه، ن. نبهانی و م. پیکری، "بررسی خواص پوشش استلایت 6 ایجاد شده به روش روکش کاری لیزر بر روی فولاد زنگ نزن مارتنزیتی 420 AISI"، فرآیندهای نوین در مهندسی مواد، دورۀ 3، شماره 4، ص. 48-41، 1388.
[26] Wang, H. Zhou, Z. Zhang, Y. Zhao, P. Zhang, D. Cong, C. Meng & F. Tan, “Tensile property of a hot work tool steel prepared by biomimetic coupled laser remelting process with different laser input energiesˮ, Applied Surface Science,Vol. 258, pp. 8732-8738, 2012.
[27] J. S. Park, J. H. Park, M. G. Lee, J. H. Sung, K. J. Cha & D. H. Kim, “Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Processˮ, Metallurgical and Materials Transactions A,Vol. 5, pp. 2529-2535, 2016.
[28] Y. Xie, G. Cheng, L. Chen, Y. Zhang & Q. Yan, “Characteristics and Generating Mechanism of Large Precipitates in Nb–Ti-microalloyed H13 Tool Steelˮ, ISIJ international,pp. 1-8, 2016.
[29] S. Kheirandish & A. Noorian, “Effect of niobium on microstructure of cast AISI H13 hot work tool steelˮ, Journal of Iron and Steel Research, International,Vol. 15, pp. 61-66, 2008.
[30] W. Chengtao, Z. Hong, L. Pengyu, S. Na, G. Qingchen, Y. Jiaxiang, W. Mingxing, Z. Yu & R. Luquan, “Fabrication of nano-sized grains by pulsed laser surface meltingˮ, Journal of Physics D: Applied Physics,Vol. 43, pp. 1-9, 2010.
[31] L. Xue, J. Chen & S. H. Wang, “Freeform laser consolidated H13 and CPM 9V tool steelsˮ, Metallography, Microstructure, and Analysis,Vol. 2, pp. 67-78, 2013.
[32] Basu, A. Samant, S. Harimkar, J. D. Majumdar, I. Manna & N. B. Dahotre, “Laser surface coating of Fe–Cr–Mo–Y–B–C bulk metallic glass composition on AISI 4140 steelˮ, Surface and Coatings Technology,Vol. 202, pp. 2623-2631, 2008.
[33] Bondar, V. Ivanchenko, A. Kozlov & J. C. Tedenac, “Carbon – Chromium – Ironˮ, in Iron Systems, Part 2: Selected Systems from Al-B-Fe to C-Co-Fe, G. Effenberg & S. Ilyenko, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 9-80.
[34] L. A. Dobrzański, J. Mazurkiewicz & E. Hajduczek, “Effect of thermal treatment on structure of newly developed 47CrMoWVTiCeZr16-26-8 hot-work tool steelˮ, Journal of Materials Processing Technology,Vol. 157–158, pp. 472-484, 2004.
[35] Noorian, S. Kheirandish & H. Saghafian, “Evaluation of the mechanical properties of Niobium modified cast AISI H13 hot work tool steelˮ, Iranian Journal of Materials Science and Engineering,Vol. 7, pp. 22-29, 2010.
[36] W. Kurz & R. Trivedi, “Rapid solidification processing and microstructure formationˮ, Materials Science and Engineering: A,Vol. 179, pp. 46-51, 1994.
[37] Khalili, M. Goodarzi, M. Mojtahedi & M. J. Torkamany, “Solidification microstructure of in-situ laser-synthesized Fe-TiC hard coatingˮ, Surface & coatings technology,pp. 747-752, 2016.
[38] J. Yang, P. Zhang, Y. Zhou, J. Guo, X. Ren, Y. Yang & Q. Yang, “First-principles study on ferrite/TiC heterogeneous nucleation interfaceˮ, Journal of Alloys and Compounds,Vol. 556, pp. 160-166, 2013.
[39] Karantzalis, A. Lekatou, E. Georgatis, Z. Arni & V. Dracopoulos, “Solidification observations of vacuum arc melting processed Fe–Al–TiC composites: TiC precipitation mechanismsˮ, Materials Characterization,Vol. 62, pp. 1196-1204, 2011.
[40] Du, X. Wang & Z. Zou, “Microstructure and tribological behavior of laser in situ synthesized TiC-reinforced Fe-based composite coatingsˮ, Tribology letters,Vol. 43, pp. 295-301, 2011.
[41] Y. Tian, C. Chen, L. Chen & Q. Huo, “Growth model of TiC dendritic crystals produced by laser surface alloying techniqueˮ, Modern Physics Letters B,Vol. 20, pp. 683-689, 2006.
[42] Du, S. R. Paital & N. B. Dahotre, “Phase constituents and microstructure of laser synthesized TiB2–TiC reinforced composite coating on steelˮ, Scripta Materialia,Vol. 59, pp. 1147-1150, 2008.
[43] Y. Chen & H. Wang, “Rapidly solidified MC carbide morphologies of a pulsed laser surface alloyed Gamma-TiAl intermetallic with carbonˮ, Scripta Materialia,Vol. 50, pp. 507-510, 2004.
[44] H. Wang, L. Yu, X. Li & P. Jiang, “Growth morphology and mechanism of MC carbide under quasi-rapid solidification conditionsˮ, Science and Technology of Advanced Materials,Vol. 2, pp. 173-176, 2001.
[45] Du, S. R. Paital & N. B. Dahotre, “Synthesis of TiB2–TiC/Fe nano-composite coating by laser surface engineeringˮ, Optics & Laser Technology,Vol. 45, pp. 647-653, 2013.
[46] T. Yamaguchi, H. Hagino, M. Takemura & A. Nakahira, “Microstructure of MC-Fe Composite Layer on Carbon Steel by Laser Surface Alloyingˮ, Journal of Laser Micro Nanoengineering,Vol. 9, pp. 83-87, 2014.
[47] S. Mridha, A. Md Idriss, M. Maleque, I. Yaacob & T. Baker, “Melting of multipass surface tracks in steel incorporating titanium carbide powdersˮ, Materials Science and Technology,Vol. 31, pp. 1362-1369, 2015.
[48] B. Du, Z. Zhang, X. Wang & Z. Zou, “Formation Mechanism Of Titanium Carbide Crystal In Laser Synthesized Metal-Ceramic Composite Coatingˮ, Surface Review and Letters,Vol. 18, pp. 1-9, 2011.
[49] J. M. Wilson & Y. C. Shin, “Microstructure and wear properties of laser-deposited functionally graded Inconel 690 reinforced with TiCˮ, Surface and Coatings Technology,Vol. 207, pp. 517-522, 2012.
[50] S. Wen & Y. C. Shin, “Modeling of transport phenomena in direct laser deposition of metal matrix compositeˮ, International Journal of Heat and Mass Transfer,Vol. 54, pp. 5319-5326, 2011.
_||_