مطالعه و بررسی تشکیل نانوکامپوزیت زمینه بین فلزی NbAl3 با ذرات تقویت کننده Al2O3: بررسی ریزساختاری، ترمودینامیکی و آنالیز حرارتی
محورهای موضوعی : سنتز موادحسین مستعان 1 * , مهدی رفیعی 2 , محمد حسن عباسی 3 , فتح الله کریم زاده 4
1 - عضو هیأت علمی دانشگاه اراک
2 - عضو هیأت علمی دانشگاه آزاد اسلامی واحد نجف آباد
3 - عضو هیأت علمی دانشگاه صنعتی اصفهان
4 - عضو هیأت علمی دانشگاه صنعتی اصفهان
کلید واژه: نانوکامپوزیت, آسیاب کاری, آنالیز حرارتی افتراقی, ترکیب بین فلزی,
چکیده مقاله :
هدف از انجام این پژوهش، تولید نانوکامپوزیتی با زمینه NbAl3 توسط روش آلیاژسازی مکانیکی به منظور افزایش چقرمگی و استحکام دما بالای آن میباشد. به این منظور مقدار 49 درصد وزنی پودر آلومینیوم به همراه 51 درصد وزنی اکسید نیوبیوم مخلوط و آلیاژسازی مکانیکی گردید. تغییرات فازی ذرات پودر و همچنین ریزساختار و مورفولوژی ذرات پودر در زمان های مختلف آسیاب کاری توسط آزمون های پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM) و میکروسکوپ الکترونی عبوری (TEM) مطالعه شدند. عملیات آنیل و همچنین آنالیز حرارتی افتراقی (DTA) جهت بررسی رفتار حرارتی ذرات پودر انجام شد. مشاهده شدکه واکنش بین آلومینیوم و اکسید نیوبیوم به صورت انفجاری بوده که در نتیجه این واکنش نانوکامپوزیت زمینه بین فلزی NbAl3 با ذرات تقویت کننده Al2O3 شکل میگیرد. مخلوط پودری آسیاب نشده نیز توسط DTA مورد مطالعه قرار گرفت که نتایج نشان داد در این شرایط تشکیل کامپوزیت NbAl3/Al2O3 در دو مرحله صورت میگیرد. در مرحله اول اکسید نیوبیوم پنج ظرفیتی توسط آلومینیوم موجود در سیستم احیا شده و نیوبیوم تشکیل میشود. در مرحله دوم آلومینیوم باقیمانده از واکنش با نیوبیوم تولید شده وارد واکنش شده که در نهایت کامپوزیت NbAl3/Al2O3 شکل میگیرد. مشاهدات صورت گرفته توسط میکروسکوپ الکترونی عبوری، تشکیل ساختار نانومتری و ذرات تقویت کننده نانومتری را تأیید مینماید.
The aim of this research is fabrication of NbAl3-based nanocomposite via mechanical alloying in order to increase its toughness and high-temperature strength. For this purpose, mixtures of 49 wt.% of aluminum and 51 wt.% of niobium oxides were mixed and mechanically alloyed. Phase evolutions, microstructure and morphology of powder particles during milling were studied using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order to study the thermal behavior of powder particles, annealing treatment and differential thermal analysis (DTA) were carried out. It was found that the reaction between aluminum and niobium oxide is explosive and during this reaction NbAl3-based nanocomposite reinforced by Al2O3 particle is formed. The as-blended powders were studied by DTA and the results showed that in this condition NbAl3/Al2O3 composite is formed within two stages. At the first step, Nb2O5 is reduced by aluminum. At the second step, the retained aluminum is reacted by niobium and finally NbAl3/Al2O3 composite is formed. Observations by TEM revealed formation of nanostructure and nano-sized reinforcement particles.
[1] Peng, “Synthesis and mechanical properties of niobium aluminide-based compositesˮ, Materials Science and Engineering: A, Vol. 480, pp. 232–236, 2008.
[2] A. A. Joraid, A. A. Abu-Sehly, M. A. El-Oyoun & S. N. Alamri, S.N., “Nonisothermal crystallization kinetics of amorphous Te51.3As45.7Cu3ˮ, Thermochimica Acta, Vol. 470, pp. 98–104, 2008.
[3] D. E. Garcia & S. Schicker, “Synthesis of Novel Niobium Aluminide‐Based Compositesˮ, Journal of the american ceramic society, Vol. 52, pp. 2248–2252, 1997.
[4] H. Kim, D. Kum & S. Hanada, “Structural evolution during mechanical alloying and annealing of a Nb-25at% Al alloyˮ, Journal of materials science, Vol. 9, pp. 571–580, 2000.
[5] I. Ahn, S. Kim, M. Park & K. Lee, K., “Phase characteristics of mechanically alloyed Al-10wt.% Nb alloyˮ, Journal of materials science letters, pp. 2015–2018, 2000.
[6] Y. I. Ustinovshchikov, B. E. Pushkarev & I. V. Sapegina, “Mechanism of Sigma-Phase Formation in the Fe – V Systemˮ, Vol. 41, pp. 822–826, 2005.
[7] D. Thoma, K. Nibur, K. Chen, J. Cooley, L. Dauelsberg, W. Hults & P. Kotula, “The effect of alloying on the properties of (Nb,Ti)Cr2 C15 Laves phasesˮ, Materials Science and Engineering: A, Vol. 329-331, pp. 408–415, 2002.
[8] D. Yoo, S. Hwang & S. Lee, “Phase formation in mechanically alloyed Nb-Al powdersˮ, pp. 1327–1329, 2000.
[9] J. M. Guilemany, N. Cinca, S. Dosta & I. G. Cano, “FeAl and NbAl3 Intermetallic-HVOF Coatings: Structure and Propertiesˮ, Journal of Thermal Spray Technology, Vol. 18, pp. 536–545, 2009.
[10] V. Gauthier, C. Josse, F. Bernard, E. Gaffet & J. Larpin, “Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing processˮ, Materials Science and Engineering: A, Vol. 265, pp. 117–128, 1999.
[11] M. Rafiei, M. H. Enayati & F. Karimzadeh, “Mechanochemical synthesis of (Fe,Ti)3Al–Al2O3 nanocompositeˮ, Journal of Alloys and Compounds, Vol. 488, pp. 144–147, 2009.
[12] M. T. K. Krasnowski, “Nanocrystalline FeAl intermetallic produced by mechanical alloying followed by hot-pressing consolidationˮ, Intermetallics, Vol. 15, pp. 201–205, 2007.
[13] S. Lane, S. Biner & O.Buck, “Room temperature fracture and high temperature creep characteristics of 20 vol .% Nb particulate reinforced aluminaˮ, Materials Science and Engineering: A, Vol. 246, pp. 244–251, 1998.
[14] M. Muñoz Morris, C. Garcia Oca & D. Morris, “Microstructure and room temperature strength of Fe-40Al containing nanocrystalline oxide particlesˮ, Acta Materialia, Vol. 51, pp. 5187–5197, 2003.
[15] ع. حاج علیلو، ع. سعیدی و م. عباسی، "تولید کاربید تیتانیوم و نانوکامپوزیت TiC-Al2O3 با استفاده از روتیل به روش سنتز احتراقی و آلیاژسازی مکانیکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد" سال چهارم، شماره اول، بهار 1389.
[16] V. Gauthier, F. Bernard, E. Gaffet, C. Josse & J. Larpin, “In-situ time resolved X-ray diffraction study of the formation of the nanocrystalline NbAl3 phase by mechanically activated self-propagating high-temperature synthesis reactionˮ, Materials Science and Engineering: A, Vol. 272, pp. 334–341, 1999.
[17] ع. حیدری مقدم، ح. یوزباشی زاده، و. دشتی زاده و ع. کفلو، "سنتز ترکیب بین فلزی نانوساختار Zr3Coبا خاصیت جذب بالا به روش آلیاژسازی مکانیکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره سوم، پاییز 1394.
[18] R. Sedighi, R. Rajabi & S. M. Rabiei, “ynthesis and Thermal Stability of Nanocrystalline Mg-6Al-1Zn-1 Si Alloy Prepared Via Mechanical Alloyingˮ, Journal of Advanced Materials and Processing, Vol. 3, pp. 67–76, 2015.
[19] E. J. Minay, I. Pong, H. B. McShane & R. D. Rawlings, “Multiphase niobium aluminides fabricated via reaction synthesisˮ, Journal of Materials Science, Vol. 41, pp. 5712–5717, 2006.
[20] T. Mousavi, F. Karimzadeh & M. H. Abbasi, “Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloyingˮ, Vol. 487, pp. 46–51, 2008.
[21] G. Williamson & W. Hall, “X-ray line broadening from filed aluminium and wolframˮ, Acta Metallurgica, Vol. 1, pp. 22–31, 1953.
[22] C. Suryanarayana, “Mechanical alloying and millingˮ, Progress in Materials Science, Vol. 46, pp. 1–184, 2001.
[23] M. Tavoosi, F. Karimzadeh & M. H. Enayati, “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloyingˮ, Materials Letters, Vol. 62, pp. 282–285, 2008.
[24] S. Z. Anvari, F. Karimzadeh & M. H. Enayati, “Synthesis and characterization of NiAl–Al2O3 nanocomposite powder by mechanical alloyingˮ, Journal of Alloys and Compounds, Vol. 477, pp. 178–181, 2009.
[25] N. Forouzanmehr, F. Karimzadeh & M. H. Enayati, “Synthesis and characterization of TiAl/α-Al2O3 nanocomposite by mechanical alloyingˮ, Journal of Alloys and Compounds, Vol. 478, pp. 257–259, 2009.
_||_