ساخت و بررسی خواص فیزیکی و سلولی فیلمهای نانوکامپوزیتی بر پایه پلی ال-لاکتیک اسید حاوی نانولولههای کربنی هپارینه شده جهت استفاده در ترمیم ضایعات عصب
محورهای موضوعی : بیوموادشکوفه مونسی راد 1 , محمد تقی خراسانی 2 , مرتضی دلیری جوپاری 3
1 - فارغ التحصیل دکتری تخصصی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، دانشکده مهندسی پزشکی (گروه بیومتریال)، تهران، ایران
2 - دانشیار، گروه بیومتریال، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران
3 - استادیار، گروه زیست فناوری دام و آبزیان، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، تهران، ایران
کلید واژه: نانولوله کربنی, ترمیم عصب, پلی ال-لاکتیک اسید, هپارین,
چکیده مقاله :
هدف از انجام این تحقیق، ساخت فیلم های نانوکامپوزیتی بر پایه پلی ال-لاکتیک اسید حاوی نانولوله های کربنی جهت استفاده در ترمیم ضایعات عصب است. برای ساخت فیلم های نانوکامپوزیتی از روش تبخیر حلال و برای دستیابی به پخش مطلوب نانولوله کربنی در زمینه نیز از امواج فرا صوتی و عمل هپارینه کردن نانولوله ها استفاده شد. اثر پارامترهای مختلف: نوع و درصد نانولوله کربنی، روی مورفولوژی فیلم ها با استفاده از میکروسکوپی الکترونی روبشی مورد مطالعه قرار گرفت. چگونگی پخش و توزیع نانولوله های کربنی در زمینه با استفاده از میکروسکوپی الکترونی عبوری بررسی شد. برای بررسی میزان آب دوستی فیلم ها از اندازه گیری زاویه تماس با آب و برای اندازه گیری بارسطحی از آزمون زتا پتانسیل استفاده شد. مطالعات درون تنی نیز به مدت دو هفته با استفاده از کشت سلول های 19 P موشی و تمایز آنها به سلول های عصبی بر روی فیلم ها انجام شد و با استفاده از میکروسکوپی الکترونی روبشی و آزمون ایمونوفلوئورسانس مورد بررسی قرار گرفت. نتایج مطالعات مربوط به فیلم ها حاکی از خواص مطلوب فیلم های حاوی نانولوله کربنی هپارینه شده جهت استفاده درترمیم بافت عصب و قابلیت این فیلم ها برای تمایز و رشد سلول های عصبی می باشد.
The objective of this study was to prepare crystalline poly (L-lactic acid) (PLLA)/multiwall carbon nanotube (MWCNT) nanocomposite films using solvent vaporization method, for nerve regeneration applications. Ultrasonic energy and heparinization of MWCNTs were used in order to effective dispersion of the carbon nanotube in the PLLA matrix. The effect of fundamental system parameters including carbon nanotube types and concentrations on morphology of the films was studied by Scanning Electron Microscopy (SEM). Transmission Electron Microscopy (TEM) was carried out for characterization of nanotubes’ dispersion in PLLA. Contact angle and zeta potential measurements were used to investigate the hydrophilicity and negative surface charge of the films. In vitro studies were also conducted by using murine P19 cell line as a suitable model system to analyze neuronal differentiation over a 2-week period. SEM and immunofluorescence staining were used to confirm the cells attachment and differentiation on the films. Obtained results indicate that films containing heparinized multiwall carbon nanotubes (HMWCNTs) were quite acceptable for nerve regeneration and enhanced the nerve cell differentiation and proliferation.
[1] O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie & E. Ghasemi, “Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheet”, Carbon, Vol. 66, pp. 395-, 2014.
[2] G. Gkikas, N. M. Barkoula & A. Paipetis, “Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy”, Composites Part B: Engineering, Vol. 43, pp. 2697-2705, 2012.
[3] F. H. Gojny, M. H. Wichmann, B. Fiedler, W. Bauhofer & K. Schulte, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites”, Composites Part A: Applied Science and Manufacturing, Vol. 36, pp. 1525-1535, 2005.
[4] H. Miyagawa & L. T. Drzal, “Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes”, Polymer, Vol. 45, pp. 5163-5170, 2004.
[5] D. Shi, J. Lian, P. He, L. Wang, F. Xiao, L. Yang, M. J. Schulz & D. B. Mast, “Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites”, Applied Physics Letters, Vol. 83, pp. 5301-5303, 2003.
[6] E. T. Thostenson & T. W. Chou, “Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites”, Carbon, Vol 44, pp. 3022-3029, 2006.
[7] L. Belyanskaya, S. Weigel, C. Hirsch, U. Tobler, H. F. Krug & P. Wick, “Effects of carbon nanotubes on primary neurons and glial cells”, Neurotoxicology, Vol. 30, pp. 702-711, 2009.
[8] Eitan, F. Fisher, R. Andrews, L. Brinson & L. Schadler, “Reinforcement mechanisms in MWCNT-filled polycarbonate”, Composites Science and Technology, Vol. 66, pp. 1162-1173, 2006.
[9] F. Inam, A. Heaton, P. Brown, T. Peijs & M. J. Reece, “Effects of dispersion surfactants on the properties of ceramic–carbon nanotube (CNT) nanocomposites”, Ceramics International, Vol. 40, pp. 511-516, 2014.
[10] J. Ning, J. Zhang, Y. Pan & J. Guo, “Surfactants assisted processing of carbon nanotube-reinforced SiO 2 matrix composites”, Ceramics International, Vol. 30, pp. 63-67, 2004.
[11] G. D. Zhan, J. D. Kuntz, J. E. Garay & A. K. Mukherjee, “Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes”, Applied Physics Letters, Vol. 83, pp. 1228-1230, 2003.
[12] M. A. Herrero, L. Lacerda, A. Bianco, K. Kostarelos & M. Prato, “Functionalised carbon nanotubes: high biocompatibility with lack of toxicity”, International Journal of Nanotechnology, Vol. 8, pp. 885-897, 2011.
[13] M. C. Serrano, M. C. Gutiérrez & F. Del Monte, “Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications”, Progress in Polymer Science, Vol. 39, pp. 1448-1471, 2014.
[14] P. Wick, P. Manser, L. K. Limbach, U. Dettlaff-Weglikowska, F. Krumeich, S. Roth, W. J. Stark & A. Bruinink, “The degree and kind of agglomeration affect carbon nanotube cytotoxicity”, Toxicology letters, Vol. 168, pp. 121-131, 2007.
[15] J. Gao, W. Li, H. Shi, M. Hu & R. K. Li, “Preparation, morphology, and mechanical properties of carbon nanotube anchored polymer nanofiber composite”, Composites Science and Technology, Vol..92, pp. 95-102, 2014.
[16] J. Kathi & K. Rhee, “Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane”, Journal of Materials Science, Vol. 43, pp. 33-37, 2008.
[17] S. Prolongo, M. Burón, M. Gude, R. Chaos-Morán, M. Campo & A. Urena, “Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites”, Composites Science and Technology, Vol. 68, pp. 2722-2730, 2008.
[18] Z. Z. Zhu, Z. Wang & H. L. Li, “Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation”, Applied Surface Scienc, Vol. 254, pp. 2934-2940, 2008.
[19] M. S. Konsta-Gdoutos, Z. S. Metaxa & S. P. Shah, “Highly dispersed carbon nanotube reinforced cement based materials”, Cement and Concrete Research, Vol. 40, pp. 1052-1059, 2010.
[20] Y. Y. Huang & E. M. Terentjev, “Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties”, Polymers, Vol. 4, pp. 275-2, 2012.
[21] Nimmagadda, K. Thurston, M. U. Nollert & P. S. McFetridge, “Chemical modification of SWNT alters in vitro cell‐SWNT interactions”, Journal of Biomedical Materials Research Part A, Vol. 76, pp. 614-625, 2006.
[22] S. Murugesan, T. J. Park, H. Yang, S. Mousa & R. J. Linhardt, “Blood compatible carbon nanotubes-nano-based neoproteoglycans”, Langmuir, Vol. 22, pp. 3461-3463, 2006.
[23] X. Chen, U. C. Tam, J. L. Czlapinski, G. S. Lee, D. Rabuka, A. Zettl & C. R. Bertozzi, “Interfacing carbon nanotubes with living cells”, Journal of the American Chemical Society, Vol. 128, pp. 6292-629, 2006.
[24] E. B. Malarkey, K. A. Fisher, E. Bekyarova, W. Liu, R. C. Haddon & V. Parpura, “Conductive single-walled carbon nanotube substrates modulate neuronal growth”, Nano letters, Vol. 9, pp. 264-268, 2008.
[25] T. Crouzier, A. Nimmagadda, M. U. Nollert & P. S. McFetridge, “Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions”, Langmuir, Vol. 24, pp. 13173-13181, 2008.
[26] T. J. Park, Y. S. Kim, T. Hwang, P. Govindaiah, S. W. Choi, E. Kim, K. Won, S. H. Lee & J. H. Kim, “Preparation and characterization of heparinized multi-walled carbon nanotubes”, Process Biochemistry, Vol. 47, No. 1, pp. 113-118, 2012.
[27] R. Linhardt & I. Capila, “Heparin-protein interactions”, Angew. Chem., Int. Ed, Vol. 41, pp. 390-412, 2002.
[28] S. H. Mounesi Rad, M. T. Khorasani, & M. Daliri Joupari, “Preparation of HMWCNT/PLLA nanocomposite scaffolds for application in nerve tissue engineering and evaluation of their physical, mechanical and cellular activity properties”, Polymers for Advanced Technologies, Vol. 27, No. 3, pp. 325-338, 2015.
[29] M. Rudnicki, “Cell culture methods and induction of differentiation of embryonal carcinoma cell lines, Teratocarcinomas and embryonic stem cells: a practical approach”, pp. 19-49, 1987.
[30] Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim & A. G. Rinzler, “Crystalline ropes of metallic carbon nanotubes”, Science-AAAS-Weekly Paper Edition, Vol. 273, pp. 483-487, 1996.
[31] X. Y. Xu, X. T. Li, S. W. Peng, J. F. Xiao, C. Liu, G. Fang, K. C. Chen & G. Q. Chen, “The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds”, Biomaterials, Vol. 31, pp. 3967-3975, 2010.
[32] Liu, Q., et al., “Preparation, properties and cytotoxicity evaluation of a biodegradable polyester elastomer composite”, Polymer Degradation and Stability, Vol. 94, No. 9, pp. 1427-1435, 2009.
[33] G. D. Guerra, N. Barbani, M. Gagliardi, E. Rosellini & C. Cristallini, “Chitosan-based macromolecular biomaterials for the regeneration of chondroskeletal and nerve tissue”, International Journal of Carbohydrate Chemistry, Vol. 2011, 2011
[34] K. Takahashi, R. Shizume, K. Uchida & H. Yajima, “Improved blood biocompatibility of composite film of chitosan/carbon nanotubes complex”, Journal of biorheology, Vol. 23, pp. 64-71, 2009.
[35] Z. Yang, Z. Cao, H. Sun & Y. Li, “Composite films based on aligned carbon nanotube arrays and a poly (N-isopropyl acrylamide) hydrogel”, Advanced Materials -Deerfield Beach THEN Weinheim, Vol. 20, pp. 2201-2205, 2008.
[36] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen & R. S. Ruoff, “Graphene-based composite materials”, Nature, Vol. 442, pp. 282-286, 2006.
[37] B. Rai, L. Grøndahl & M. Trau, “Combining chemistry and biology to create colloidally stable bionanohydroxyapatite particles: toward load-bearing bone applications”, Langmuir, Vol. 24, pp. 7744-7749, 2008.
[38] E. A. Vogler, “Structure and reactivity of water at biomaterial surfaces”, Advances in colloid and interface science, Vol. 74, pp. 69-117, 1998.
[39] م. ر. فروغی، س. کرباسی، ر. ابراهیمی کهریزسنگی و ع. سعادت، "ارزیابی خواص فیزیکی داربست کامپوزیت نانوکریستال هیدروکسی آپاتیت / پلی هیدروکسی بوتیرات برای کاربرد در مهندسی بافت استخوان"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد، شماره2، صفحه 60-51، تابستان 1391.
[40] م. ارسطویی و ع. دوست محمدی، "ساخت و مشخصه یابی داربست تیتانیومی متخلخل پوشش داده شده با آکرمانیت"، فصلنامه علمی- پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 2، صفحه 98-87، تابستان 1396.
[41] Y. Luo, S. Wang, M. Shen, R. Qi, Y. Fang, R. Guo, H. Cai, X. Cao, H. Tomás & M. Zhu, “Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications”, Carbohydrate polymers, Vol. 91, pp. 419-427, 2013.
_||_