تاثیر پارامتر های ترمومکانیکی بر رفتار بافت آلیاژ منیزیم AZ63
محورهای موضوعی : فرآیندهای شکل دهی فلزات و ترمومکانیکالغلامرضا ابراهیمی 1 * , مهدی کاویانی 2
1 - مغاون آموزشی و پژوهشی-دانشگاه فناوری نوین سبزوار
2 - دانشجو-دانشگاه حکیم سبزواری
کلید واژه: بافت, آلیاژ منیزیم AZ63, دوقلویی, تبلور مجدد دینامیکی,
چکیده مقاله :
به منظور بررسی تاثیر پارامتر های ترمومکانیکی بر رفتار بافت آلیاژ منیزیم AZ63، آزمون فشار گرم بر روی نمونه های اکسترود شده آلیاژ منیزیم AZ63 انجام شد. ابتدا نمونه ها در دو جهت اکسترود و جهت نرمال ماشین کاری شدند. سپس آزمون فشار گرم در دمای °C 250 و نرخ کرنش های s-1 01/0 و s-1 1 و کرنش های مختلف انجام شد. بررسی های ریزساختاری و تغییرات بافت نشان می دهد که در کرنش های اولیه تغییر شکل فشار گرم، در نمونه های جهت اکسترود دوقلویی های کششی منجر به تقویت بافت قاعده در جهت نورد و دوقلویی های فشاری در نمونه های جهت نرمال باعث تغییر بافت به سمت جهت عرضی می شوند. همچنین با توجه به تغییرات بافت توسط تصاویر قطبی مشخص شده است که در کرنش های بالا در نمونه های جهت نرمال، تبلور مجدد دینامیکی منجر به کاهش شدت بافت قاعده شده است.
Hot compression test was carried out on extruded AZ63 magnesium alloy samples to investigation of the effect of thermomechanical parameters on AZ63 magnesium alloy texture behavior. At first, samples have been machined on two extruded direction (ED) and normal direction (ND). Then, hot compression test performed at 250 °C and strain rates of 0.01 s-1 and 1 s-1 and various strain. Microstructural investigation and texture evolution reveal that tensile twinning leading to basal texture improvement in roll direction (RD=ED) and compressive twinning causes changing texture align transverse direction (TD) at primarily strain during hot compression test. Also, observation of Texture evolution by pole figures indicate that dynamic recrystallization reduces basal texture intensity in ND samples at high strains.
[1] M. R. Barnett, “Twinning and the ductility of magnesium alloys: Part I. "Tension" twinsˮ, Mater. Sci. Eng, Vol. 464A, pp. 1-7, 2007.
[2] M. R. Barnett, “Twinning and the ductility of magnesium alloys: Part II. "Contraction" twinsˮ, Mater. Sci. Eng, Vol. 464A, pp 8-16, 2007.
[3] م. پاکشیر، ر. مدحت و خ مرشد بهبهانی، "بررسی و مقایسۀ رفتار خوردگی آلیاژ منیزیم AZ91 ریختگی و تغییرفرمیافته بهروش اکستروژنبرشیساده"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، 2، 1394.
[4] M. G. Lee, R. H. Wagoner, J. K. Lee, K. Chung & H. Y. Kim, “Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheetsˮ, Int. J. Plast, Vol. 24, pp. 545-582, 2008.
[5] G. Proust, C. N. Tomé, A. Jain & S. R. Agnew, “Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31ˮ, Int. J. Plast, Vol. 25, pp. 861–880, 2009.
[6] P. G. Partridge, “The crystallography and deformation modes of hexagonal close-packed metalsˮ Metall. Rev, Vol. 12, pp. 169–194, 1967.
[7] B. C. Wonsiewicz, “Plasticity of Magnesium Crystals, Massˮ, Inst. Tech (1966) PhD Thesis, 1966.
[8] F. Kabirian, A. S. Khan & T. Gnaupel-Herlod, “Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditionsˮ, Int. J. Plast, Vol. 68, pp. 1-20, 2015.
[9] S. R. Agnew, M. H. Yoo & C. N. Tome, “Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Yˮ, Acta Mater, Vol. 49, pp. 4277–4289, 2001.
[10] S. Godet, L. Jiang, A. A. Luo & J. J. Jonas, “Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubesˮ, Scripta Mater, Vol. 55, pp. 1055–1058, 2006.
[11] M. R. Barnett, Z. Keshavarz, A. G. Beer & D. Atwell, “Influence of grain size on the compressive deformation of wrought Mg–3Al–1Znˮ, Acta Mater, Vol. 52, pp. 5093–5103, 2004.
[12] S. H. Choi, E. J. Shin & B. S. Seong, “Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compressionˮ, Acta Mater, Vol. 55, pp. 4181–4192, 2007.
[13] Y. V. R. K. Prasad & K. P. Rao, “Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg–3Al–1Zn alloy plateˮ, Materials Science and Engineering, Vol. 432A, pp. 170–177, 2006.
[14] I. A. Maksoud & H. Ahmed, “Investigation of the effect of strain rate and temperature on the deformability and microstructure evolution of AZ31 magnesium alloyˮ, Mater. Sci. Eng, Vol. 504A, pp. 40−48, 2009.
[15] P. Klimanek & A. Potzsch, “Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain ratesˮ, Mater. Sci. Eng, Vol. 324A, pp. 145−150, 2002.
[16] J. C. Tan & M. J. Tan, “Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheetˮ, Mater. Sci. Eng., Vol. 339A, pp. 124−132, 2003.
[17] S. Xu, W. R. Tyson, R. Eagleson, R. Zavadil, Z. Liu, P. L. Mao, C. Y. Wang, S. I. Hill & A. A. Luo, “Dependence of flow strength and deformation mechanisms in common wrought and diecast magnesium alloys on orientation, strain rate and temperatureˮ, Journal of Magnesium and Alloys, Vol. 1, pp. 275-282, 2013.
[18] T. Al-Samman & G. Gottstein, “Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanismsˮ, Materials Science and Engineering, Vol. 488A, pp. 406-414, 2008.
[19] L. Jin, D. Lin, D. Mao, X. Zeng & W. Ding, “An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusionˮ, J. Alloy Compd, Vol. 426, pp. 148-154, 2006.
[20] M. Knezevic, A. Levinson, R. Harris, R. K. Mishra, R. D. Doherty & S. R. Kalidindi, “Deformation twinning in AZ31: Influence on strain hardening and texture evolutionˮ, Acta Mater, Vol. 58, pp. 6230–6242, 2010.
[21] S. Xu, W. R. Tyson, R. Bouchard & R. Eagleson, “Tensile and Compressive Properties for Crashworthiness Assessment of a Large AZ31 Extrusionˮ, Mater. Sci. Forum, Vol. 618, pp. 527-532, 2009.
[22] S. G. Hong, S. H. Park & C. S. Lee, “Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloyˮ, Acta Mater, Vol. 58, pp. 5873–5885, 2010.
[23] D. Zhang & S. Li, “Orientation dependencies of mechanical response, microstructure and texture evolution in hot compression of AZ31 magnesium alloy processed by equal channel angular extrusionˮ, Mater. Sci. Eng, Vol. 528A, pp. 4982–4987, 2011.
[24] S. Abdsessameud & D. Bradai, “Microstructure and texture evolution in hot rolled and annealed magnesium alloy TRC AZ31ˮ, Canadian Metallurgical Quarterly, Vol. 48, pp. 433−442, 2009.
[25] L. Jiang, J. J. Jonas, A. A. Luo, A. K. Sachdev & S. Godet, “Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperaturesˮ, Scripta Mater, Vol. 54, pp. 771–775, 2006.
[26] N. Dixit, K. Y. Xie, K. J. Hemker & K. T. Ramesh, “Microstructral evolution of pure magnesium under high strain rate loadingˮ, Acta Mater, Vol. 87, pp. 56–67, 2015.
[27] ع. مرتضایی و م. شمعانیان، "اثر عملیات حرارتی پیرسازی بر ریزساختار، خواص مکانیکی و مقاومت به خوردگی سوپرآلیاش پایه نیکل اینکونل 71٨"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، 4، 1394.
[28] H. Asgari, J. A. Szpunar & A. G. Odeshi, “Experimental and simulation analysis of texture formation and deformation mechanism of rolled AZ31B magnesium alloy under dynamic loadingˮ, Materials Science and Engineering, Vol. 618A, pp. 310-322, 2014.
[29] X. Fan, W. Tang, S. Zhang, D. Li & Y. Peng, “Effects of dynamic recrystallization in extruded and compressed AZ31 magnesium alloyˮ, Acta Metal, Vol. 23, pp. 334-342, 2010.
[30] T. Al-Samman, X. Li & S. G. Chowdhury, “Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloyˮ, Mater. Sci. Eng, Vol. 527A, pp. 3450−3463, 2010.
[31] J. Victoria-Hernandez, S. Yi, J. Bohlen, G. Kurz & D. Letzig, “The influence of the recrystallization mechanisms and grain growth on the texture of a hot rolled AZ31 sheet during subsequent isochronal annealingˮ, J. Alloy Compd, Vol. 616, pp. 189-197, 2014.
[32] Styczynski, C. H. Hartig & J. Bohlen, “Cold rolling textures in AZ31 wrought magnesium alloyˮ, Scripta Mater, Vol. 50, pp. 943−947, 2004.
[33] Y. Xin, M. Wang, Z. Zeng, G. Huang & Q. Liu, “Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capabilityˮ, Scripta Materialia, Vol. 64, pp. 986-989, 2011.
[34] J. Del Valle, M. T. Pérez-Prado & O. Ruano, “Texture evolution during large-strain hot rolling of the Mg AZ61 alloyˮ, Materials Science and Engineering, Vol. 355A,pp. 68-78, 2003.
[35] Jain & S. R. Agnew, “Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheetˮ, Mater. Sci. Eng, Vol. 462A, pp. 29–36, 2007.
[36] L. Meng, P. Yang, Q. Xie & W. Mao, “Analyses on compression twins in magnesiumˮ, Mater. Trans, Vol. 49, pp. 710-714, 2008.
[37] R. Cottam, J. Roboson, G. Lorimer & B. Davis, “Dynamic recrystallization of Mg and Mg−Y alloys: Crystallographic texture developmentˮ, Mater. Sci. Eng, Vol. 485A, pp. 375−382, 2008.
[38] S. E. Ion, F. J. Humphrey & S. H. White, “Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesiumˮ, Acta Metal, Vol. 30, pp. 1909−1919, 1982.
[39] F. Xiong & C. H. J. Davies, “Strain path and temperature effects on texture and microstructure evolution of AZ31ˮ, Magnesium Technology. San Francisco, pp. 217−222, 2005.
_||_