تهیه نانوکامپوزیت پلی استایرن–کربن نانوتیوپ چند جداره با خواص مکانیکی بهبود یافته با بکارگیری روش رویه پاسخ
محورهای موضوعی : پلیمرهای پیشرفته
1 - دانشگاه آزاد تبریز
2 - دانشگاه آزاد
کلید واژه: نانوکامپوزیت, پلی استایرن, کربن نانوتیوب, روش رویه پاسخ,
چکیده مقاله :
در این تحقیق، به منظور بهبود خواص مکانیکی پلی استایرن(PS)، کربن نانوتیوب چند جداره MWCNT به عنوان عامل تقویت کننده انتخاب شد. نانو کامپوزیت پلی استایرن- کربن نانوتیوب( PS-MWCNT) از طریق اختلاط کربن نانوتیوب با محلول پلی استایرن سنتز گردید. اثر 3 فاکتور شامل درصد وزنی کربن نانوتیوب چند جداره، دمای خشک شدن فیلم، مدت زمان همزدن محلول نانو کامپوزیت در سطوح مختلف با استفاده از طراحی باکس بنکن (روش رویه پاسخ) مورد بررسی قرار گرفت. مطابق این روش تعداد 15 آزمایش انجام گرفت. مقادیر ثبت شده برای استحکام کششی فیلمهای نانو کامپوزیتی، به عنوان پاسخ برای تجزیه و تحلیل دادهها با استفاده از آنالیز واریانس مورد استفاده قرار گرفت. خطی بودن منحنی توزیع نرمال برای باقیماندهها صحیح بودن مدل ارائه شده را اثبات نمود. نمودارهای دو بعدی و سه بعدی طرح رویه سطح و حالت بهینه مورد مطالعه قرار گرفت. نتایج نشان داد که با افزایش درصد وزنی کربن نانوتیوب چند جداره و مدت زمان همزدن محلول نانو کامپوزیت استحکام کششی افزایش مییابد. در حالیکه با افزایش دمای خشک شدن فیلم استحکام کششی کاهش می یابد. همچنین برخی خواص فیزیکوشیمیایی فیلم نانوکامپوزیتی با استفاده از تکنیکهای اسپکتروسکوپی FT-IR و TGA مورد بررسی قرار گرفت.
In this research, with the aim of improving mechanical properties of polystyrene (PS), multi walled carbon nanotube (MWCNT) was selected as reinforcement agent. PS-MWCNT nanocomposite was prepared by mixing of MWCNT nanostructurs with a solution of PS. The effects of three factors containing MWCNT percentage, film drying temperature and stirring time were investigated in different levels by Box Behnken design of response surface methodology (RSM). According this method, 15 experiments were performed. The tensile strength values of nanocomposite films were used as response for data analyzing by variance analysis. The linearity of normal probability plot of the residuals established the correctness of the proposed model. The contour and surface plots of RSM were studied and the optimal conditions of nanocomposit preparation were determined. The results showed that increasing of MWCNT percentage and stirring time cause to increase of tensile strength, while the increasing of film drying temperature causes to decrease of tensile strength. Also, some physicochemical properties of the nanocomposite film were examined using FT-IR spectroscopy and TGA techniques.
[1] M. Vacaman & L. Redon, “Polymer Nanocomposites fundamental research to specific application”, Mater. Sci., Vol. 273, pp. 223-227, 1995.
[2] M. N. Ritther, “Polymeric delivery systems”, Cer. Soc. Bull., Vol. 76, pp. 51-54, 1997.
[3] V. Kazukauskas, V. Kalendra, C. W. Bumby, B. M. Ludbrook & A. B. Kaiser, “Electrical Conductivity of carbon nanotubes and polystyrene ecomposites”, Phys Stat Sol. C, Vol. 5, pp. 3172-3174, 2008.
[4] P. Dwivedi, S. S. Narvi & R. P. Tewari, “A Novel Ag/CS-PVC Nanomaterial with High Antimicrobial Properties: A Potential Self-Sterilizing Biomaterial”, International Journal of Scientific and Research Publications, Vol. 2, pp. 1-5, 2012.
[5] P. Sokhandani, A. A. Babaluo, M. Rezaei, M. Shahrezaei, A. Hasanzadeh, S. G.Mehmandoust & R. Mehdizadeh, “Nanocomposites of PVC/TiO2 nanorods: Surface tension and mechanical properties before and after UV exposure”, Journal of Applied Polymer Science, Vol. 129, pp. 3265–3272, 2013.
[6] J. Pagacz & K. Pielichowski, “Preparation and characterization of PVC/montmorillonite nanocomposites-A review”, Journal of Vinyl and Additive Technology, Vol. 15, pp. 61–76, 2009.
[7] Z. N. Zhang, J. Zhang, P. Chen, Q. Zhang, J. S. He & G. H. Hu, “Enhanced interactions Between multi-walled carbon nanotubes and polystyrene induced by melt mixing”, Carbon, Vol. 44, pp. 692–698, 2006.
[8] V. Kazukauskas, V. Kalendra, C. W. Bumby, B. M. Ludbrook, A. B. Kaiser, “Electrical Conductivity of carbon nanotubes and polystyrene ecomposites”, Phys Stat Sol. C, Vol. 5, pp. 3172-3174, 2008.
[9] Z. Wang, M. Lu, L. LiH & X-Y. Guo, “SWNTs–polystyrene composites preparations and electrical properties research”, Mater Chem Phys, Vol. 100, pp. 77-81, 2006.
[10] H. T. Ham, Y. S. Choi, M. G. Chee & I. J. Chung, “Single wall carbon nanotubes covered With polystyrene nanoparticles by in-situ mini emulsion polymerization”, J. Polym Sci Part A: Polym Chem, Vol. 44, pp. 573–584, 2006.
[11] B. Safadi, R. Andrews & E. A. Grulke, “Multi-walled carbon nanotube polymer composites: synthesis and characterization of thin films”, J. Appl. Polym. Sci. Vol. 84, pp. 2660-2669, 2002.
[12] J. Q. Pham, C. A. Mitchell, J. L. Bahr, J. M. Tour, R. Krishanamoorti & P. F. Green, “Glass Transition of polymer/single-walled carbon nanotube composite films”, J. Polym. Sci. Polym. Phys, Vol. 41, pp. 3339–3345, 2003.
[13] U. K. Miftah, V. G. Gomes & I. S. Altarawneh, “Synthesizing polystyrene/carbon nanotube composites by emulsion polymerization with non-covalent and covalent functionalization”, Carbon, Vol. 4 8, pp. 2925 –2933, 2010.
[14] D. I. J Sudarisman, “The effect of processing parameters on the flexural properties of unidirectional carbon fibre reinforced polymer (CFRP) composites”, Materials Science and Engineering, Vol. 498A, pp. 65–68, 2008.
[15] Y. Wan, C. Xiong, J. Yu & D. Wen, “Effect of processing parameters on electrical resistivity and thermo-sensitive properties of carbon-black/styrene–butadiene–rubber composite membranes”, Composites Science and Technology, Vol. 65, pp. 1769–1779, 2005.
[16] F. D. P. Cota, T. H. Panzera, M. A. Schiavon, A. L. Christoforo, P. H. R. Borges, C. Bowen & F. Scarpa, “Full factorial design analysis of carbon nanotube polymer-cement composites”, Materials Research, Vol. 15, pp. 573-580, 2012.
[17] ع. خطیبی، ر. ابراهیمی کهریزسنگی و م. قشنگ، "بررسی اثر پارامترهای دما و pH بر مورفولوژی میکروکرههای کامپوزیتی نانواکسیدتیتانیوم/کربن سنتز شده به روش سولوترمال"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 9، صفحه 193-203، 1394.
[18] S. T. Olalekan, M. F. Alkathib, F. Yusof, Q. H. Shah & S. A. Muyibi, “Effect of Processing Conditions in the Preparation of PP-Ternary Nanocomposite Using MWCNT as Secondary Filler”, Journal of Materials Science and Engineering, Vol. 5, pp. 139-144, 2011.
[19] م. فربودی و م. قاسمی، "کاربرد روش تاگوچی برای بهینه سازی خواص مکانیکی نانو کامپوزیت پلی وینیل کلراید- مونت موریلونیت"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 9، صفحه 179-190، 1394.
[20] T. Canel, A. U. Kaya & B. Çelik, “Parameter optimization of nanosecond laser for microdrilling on PVC by Taguchi method Original Research Article” Optics & Laser Technology, Vol. 44, pp. 2347-2353, 2012.
[21] E. Hakimian & A. B. Sulong, “Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method”, Materials & Design, Vol. 42, pp. 62-71, 2012.
[22] R. H. Myers, D. C. Montogomery, “Response Surface Methodology”, John Wiley and Sons. New York, 1995.
[23] K. Kaniappan & S. Latha, “Certain Investigations on the Formulation and Characterization of Polystyrene/Poly(methyl methacrylate) Blends”, International Journal of ChemTech Research, Vol. 3, pp. 708-717, 2011.
[24] H. Y. Huang, R. T. Yang, D. Chinn & C. L. Munson, “Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas”, Ind. Eng. Chem. Res.,Vol.42, pp. 2427–2433,2003.
[25] G. Ovejero, J. L. Sotelo, M. D. Romero, A. Rodrıguez, M. A. Ocana, G. Rodrıguez & J. Garcıa, “Multiwalled Carbon Nanotubes for Liquid-Phase Oxidation. Functionalization, Characterization, and Catalytic Activity”, Ind. Eng. Chem. Res., Vol. 45, pp. 2206–2212, 2006.
[26] S. Goyanes, G. R. Rubiolo, A. Salazar, A. Jimeno, M. A. Corcuera & I. Mondragon, “Carboxylation Treatment of Multiwalled Carbon Nanotubes Monitored by Infrared and Ultraviolet Spectroscopies and Scanning Probe Microscopy”, Diamond Relat. Mater, Vol. 16, pp. 412–417, 2007.