تأثیر درصد تقویت کننده و توزیع آن بر رفتار مکانیکی کامپوزیت پایه اپوکسی تقویت شده با آلومینا
محورهای موضوعی : عملیات حرارتیمحمدحسین بینا 1 , کوروش شیروانی 2 , حمید رضا سلیمی جزی 3
1 - سازمان پژوهش های علمی و صنعتی ایران
2 - سازمان پژوهش های علمی و صنعتی ایران، دانشکده مواد پیشرفته و انرژی های نو
3 - دانشگاه صنعتی اصفهان، دانشکده مواد
کلید واژه: خواص مکانیکی, کامپوزیت, آلومینا, اپوکسی,
چکیده مقاله :
در این مقاله خواص برشی و کششی کامپوزیت پایه اپوکسی تقویت شده با ذرات آلومینا بررسی شده است. به این منظور ابتدا نمونه های کامپوزیتی با درصدهای وزنی متفاوت از ذرات آلومینا (10 تا 50 درصد) تولید گردید. سپس جهت ارزیابی خواص برشی و کششی نمونه های کامپوزیتی از آزمون پانچ برشی و برای بررسی پراکندگی و توزیع ذرات آلومینا، فصل مشترک ذرات/ زمینه و سطح مقطع شکست نمونهها از میکروسکوپ الکترونی روبشی (SEM) مجهز به آنالیزگر EDS استفاده شد. نتایج آزمونها نشان داد که افزودن آلومینا تا میزان 30 درصد منجر به توزیع همگن و یکنواخت و استحکام برشی بیشتر کامپوزیت میگردد. اما هنگامیکه میزان تقویت کننده بیش از 30 درصد باشد، میزان تجمع ذرات بیشتر شده و به تبع آن استحکام کامپوزیت کاهش مییابد. همچنین تفاوت قابل توجهی بین سطح مقطع شکست اپوکسی خالص و کامپوزیت ها مشاهده شد. برخلاف پلیمر خالص، سطح مقطع شکست کامپوزیت های تقویت شده با آلومینا (تا 30 درصد) ناهموارتر بود، که حکایت از افزایش زبری سطح در اثر انحراف ترک دارد. شکست در کامپوزیتهای تقویت شده با درصدهای بالاتر از 30 درصد نیز به علت میزان ترشوندگی کم ذرات آلومینا با رزین اپوکسی در تماسهای ذره – ذره اتفاق افتاده است.
In this paper, the shear and tensile properties of alumina reinforced epoxy composite have been studied. For this purpose, the composite samples were first produced with different weight percentages of alumina particles (10 to 50 percent). Then, the shear punching test was used for the evaluation of the shear and tensile properties of composite samples; the dispersion and distribution of alumina particles, interface of particles/ matrix, and the fracture surface of the samples were examined by the scanning electron microscope (SEM) equipped with EDS analyzer. The results of the tests showed that by the addition of alumina up to 30 percent resulted in homogenous and uniform distribution as well as more shear strength of composites. But, when the rate of the reinforcer exceeds 30 percent, the rate of the aggregation of the particles increases and consequently the composite strength is reduced. Also, a significant difference was observed between the fracture surface of pure epoxy and that of composites. Unlike pure polymers, the fracture surface of the composites reinforced with alumina (up to 30 percent) was more uneven, denoting an increase in the surface roughness due to the crack path deflection. Fracture in the reinforced composites with a percentage higher than 30 percent has again taken place due to the rate of low wetting of alumina particles with epoxy resin in particle-particle contacts.
[1] W. D. Callister, “Fundamentals of materials science and engineering: an interactive e-text”, Wiley Publishing, 2000.
[2] Omrani, L. C. Simon & A. A. Rostami, “The effects of alumina nanoparticle on the properties of an epoxy resin system”, Materials Chemistry and Physics, Vol. 114, pp. 145-150, 2009.
[3] M. T. Tilbrook, L. Rutgers, R. J. Moon & M. Hoffman, “Fatigue crack propagation resistance in homogeneous and graded alumina - epoxy composite”, International Journal of Fatigue, Vol. 29, pp. 158-167, 2007.
[4] S. Zhao, L. S. Schadler, R. Duncan, H. Hillborg & T. Auletta, “Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy”, Composites Science and Technology, Vol. 68, pp. 2965-75, 2008.
[5] P. Ruamcharoen, S. Umaree & J. Ruamcharoen, “Relationship between tensile properties and morphology of epoxy resin modified by epoxidases natural rubber”, Journal of Materials Science and Engineering, Vol. 5, pp. 504-510, 2011.
[6] J. H. Hodgkin, G. P. Simon & R. J. Varley, “Thermoplastic toughening of epoxy resins: a critical review”, Polymers for Advanced Technologies, Vol. 9, pp. 3-10, 1998.
[7] J. Spanoudakis & R. J. Young, “Crack propagation in a glass particle-filled epoxy resin:Part 2. Effect of particle-matrix adhesion”, Journal of Materials Science, Vol. 19, pp. 487-496, 1984.
[8] M. Zhang & R. P. Singh, “Mechanical reinforcement of unsaturated polyester by AL2O3 nanoparticles”, Materials Letters, Vol. 58, pp. 408-412, 2004.
[9] A. S. Zerda & A. J. Lesser, “Intercalated clay nanocomposites: Morphology, mechanics, and fracture behavior”, Journal of Polymer Science Part B: Polymer Physics, Vol. 39, pp. 1137-46, 2001.
[10] D. Chan, V. Shao & R. P. Singh, “Fracture of metal toughened polymers,” Proceedings of the SEM IX International Congress on Experimental Mechanics, Orlando, Florida, pp. 853-855, 2000.
[11] H. J. Kim, D. H. Jung, I. H. Jung, J. I. Cifuentes, K. Y. Rhee & D. Hui, “Enhancement of mechanical properties of aluminum/epoxy composites with silane functionalization of aluminum powder”, Composites Part B: Engineering, Vol. 43, pp. 1743–48, 2012.
[12] T. Adachi, W. Araki, T. Nakahara, A. Yamaji & M. Gamou, “Fracture toughness of silica particulate-filled epoxy composite”, Journal of Applied Polymer Science, Vol. 86, pp. 2261-65, 2002.
[13] Ye. P. Mamunya, V. V. Davydenko, P. Pissis & E. V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders”, European Polymer Journal, Vol. 38, pp. 1887–97, 2002.
[14] J. N. Sultan & F. J. McGarry, “Effect of rubber particle size on deformation mechanisms in glassy epoxy”, Polymer Engineering and Science, Vol. 13, pp. 29–34, 1973.
[15] T. T. Wang & H. M. Zupko, “Phase separation behavior of rubber-modified epoxies”, Journal of Applied Polymer Science, Vol. 26, pp. 2391–2401, 1981.
[16] R. P. Singh, M. Zhang & D. Chan, “Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction”, Journal of Materials Science, Vol. 37, pp. 781-788, 2002.
[17] F. F. Lange, “The interaction of a crack front with a second-phase dispersion”, Philosophical Magazine, Vol. 22, pp. 983-92, 1970.
[18] K. T. Faber & A. G. Evans, “Crack deflection processes: I. Theory”, Acta Metallurgical, Vol. 31, pp. 565-76, 1983.
[19] A. G. Evans & K. T. Faber, “Crack-growth resistance of micro cracking brittle materials”, Journal of the American Ceramic Society, Vol. 67, pp. 255-260, 1984.
[20] S. Ma, “Rapid tooling with particulate reinforced epoxy composites for low volume production, SIMTech Technical Reports, Vol. 8, pp. 11-17, 2007.
[21] L. M. Grath, R. S. Parnas, S. H. King, J. L. Schroeder, D. A. Fischer & J. L. Lenhart, “Investigation of the thermal, mechanical, and fracture properties of alumina epoxy composites”, Polymer, Vol. 49, pp. 999-1014, 2008.
[22] S. Biswas & A. Satapathy, “A study on tribological behavior of alumina-filled glass–epoxy composites using taguchi experimental design”, Tribology Transactions, Vol. 53, pp. 520-532, 2010.
[23] K. Sabeel Ahmed, S. S. Khalid, V. Mallinatha & S. J. Amith Kumar, “Dry sliding wear behavior of SiC/Al2O3 filled jute/epoxy composites”, Materials & Design, Vol. 36, pp. 306-315, 2012.
[24] B. Wetzel, F. Haupert & M. Q. Zhang, “Epoxy nanocomposites with high mechanical and tribological performance”, Composites Science and Technology, Vol. 63, pp. 2055-2067, 2003.
[25] M. A. Boyle, C. J. Martin & J. D. Neuner, ASM Handbook: Composite, ASM International, Vol. 21, pp. 195-222, 2001.
[26] http://www.sigmaaldrich.com/catalog/product/aldrich/495050.
[27] R. K. Guduru, K. A. Darling, R. Kishore, R. O. Scattergood, C. C. Koch & K. L. Murty, “Evaluation of mechanical properties using shear-punch testing”, Material Science and Engineering, Vol. 395A, pp. 307-314, 2005.
[28] V. C. S. Chandrasekaran, S. G. Advani & M. H. Santare, “Influence of resin properties on interlaminar shear strength of glass/epoxy/MWNT hybrid composites”, Composite es: Part A, Vol. 42, pp. 1007-1016, 2011.
[29] M. B. Toloczko, M. L. Hamilton & G. E. Lucas, “Ductility correlations between shear punch and uniaxial tensile test data”, Journal of Nuclear Materials, Vol. 283, pp. 987-991, 2000.
[30] S. C. Zunjarrao & R. P. Singh, “Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles”, Composites Science and Technology, Vol. 66, pp. 2296-2305, 2006.
[31] J. Kinloch, R. D. Mohammed, A. C. Taylor, C. Eger, S. Sprenger & D. Egan, “The effect of silica Nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers” , Journal of Materials Science, Vol. 40, pp. 5083-86, 2005.
[32] B. B. Johnsen, A. J. Kinloch, R. D. Mohammed, A.C. Taylor & S. Sprenger, “Toughening mechanisms of nanoparticle-modified epoxy polymers”, Polymer, Vol. 48, pp. 530-41, 2007.
[33] B. Wetzel, P. Rosso, F. Haupert & K. Friedrich, “Epoxy nanocomposites – fracture and toughening mechanisms”, Engineering Fracture Mechanics, Vol. 73, pp. 2375-98, 2006.
[34] م. ه. صادقیان، س. م. زبرجد و س. ع. سجادی، "بررسی نقش نانولوله های کربنی چند دیواره بر ساز و کار شکست نانو کامپوزیت زمینه اپوکسی"، مجله علوم و تکنولوژی پلیمر، سال 21، شماره 5، صفحه 430-417، 1387.
[35] ب. تکیه معروف و ر. باقری، "مطالعه رفتار مکانیکی نانوکامپوزیت اپوکسی – خاک رس"، مجله علوم و تکنولوژی پلیمر، سال 20، شماره 1، صفحه 64-59، 1386.
[36] D. J. Green, P. S. Nicholson & J. D. Embury, “Fracture of a brittle particle composite: part 1- experimental aspectsˮ, Journal of Materials Science, Vol. 14, pp 1413-20, 1979.
[37] D. J. Green, P. S. Nicholson & J. D. Embury, “Fracture of a brittle particle composite: part 2- Theoretical Aspects”, Journal of Materials Science, Vol. 14, pp. 1657–61, 1979.
_||_