تحلیل شاخصهای آسیب پذیری شهری با رویکرد مدیریت بحران زلزله (مطالعه موردی: شهر ارومیه)
محورهای موضوعی : مخاطرات محیطی (طبیعی و انسانی) و سکونتگاههای انسانیعلی خدمت زاده 1 , میرنجف موسوی 2 , اردشیر یوسف زاده 3
1 - دانش آموخته کارشناسی ارشد سنجش از دور و GIS، دانشگاه تبریز، تبریز، ایران
2 - استاد گروه جغرافیا و برنامه ریزی شهری، دانشگاه ارومیه، ارومیه، ایران
3 - دانشجوی دکترای اقلیم شناشی- مخاطرات اقلیمی ،دانشگاه محقق اردبیلی،اردبیل، ایران
کلید واژه: زلزله, GIS, شهر ارومیه, مدیریت بحران شهری,
چکیده مقاله :
مقدمه: وقوع بلایای طبیعی مانند زلزله، در بافت شهری و مناطق پرتراکم جمعیتی خسارات شدیدی را ایجاد کرده است. با توجه به قرار گیری کشور روی کمربند زلزله پژوهش حاضر شهر ارومیه را به واسطهی ویژگیهای طبیعی و خطر لرزه خیزی متوسط، جهت شناسایی مهمترین عوامل تشدید کننده آسیب رسان مورد مطالعه قرار داده است. هدف پژوهش: مدیریت بحران شهری در اثر وقوع زلزلهروش شناسی تحقیق : این پژوهش از نظر روش توصیفی و تحلیلی و از نظر هدف کاربردی می باشد. در بخش توصیفی ازنتایج سرشماری عمومی نفوس و مسکن سال 1395، اسناد و مطالعات کتابخانه ای و در بخش تحلیلی از فرآیند تحلیل شبکه و عملگرهای فازی در نرم افزار ARC GIS استفاده شده است.قلمروجغرافیایی پژوهش: محدوده مورد مطالعه با مساحت 91/4854 هکتار 91/0 درصد از کل مساحت شهرستان ارومیه را شامل میشود که جمعیتی بالغ بر 727066 نفر(غیر از شهرک گلمانخانه) را در خود جای داده است. بر اساس سرشماری سال 1395 و بر پایه اطلاعات به دست آمده از بلوکهای آماری تعداد جمعیت و خانوار محدوده به ترتیب 727066 نفر و 222737 خانوار می باشد. محدوده مورد مطالعه 83/97 درصد از جمعیت شهرستان ارومیه را در خود جای داده است.یافته ها و بحث: بیشترین آسیب پذیری در مناطق با شیبهای بیشتر از20 درصد و نواحی با تراکم جمعیتی بالا مشاهده میشود. نواحی با آسیب پذیری خیلی زیاد با 12/34 درصد، زیاد با 81/11 درصد، متوسط با 47/30 درصد، کم با 89/20 درصد و خیلی کم با 7/2 درصد از مساحت بلوکهای آماری را به خود اختصاص دادند. در حالت کلی میتوان گفت که 93/45 درصد از محدوده مورد مطالعه بر اساس معیارهای استفاده شده در تحلیل آسیب پذیرند.نتایج : در پهنه بندی زلزله در سطح شهر ارومیه 5 کلاس آسیب پذیر به دست آمد که کلاس آسیب پذیری خیلی زیاد در منطقه 2 شهری با مساحت 09/341 هکتار( 19/13 درصد) بیشترین کاربری های آسیب پذیر را دارد. منطقه 3 با 24/8 درصد، منطقه 1 با 57/7 درصد، منطقه 4 با 76/2 درصد و منطقه 5 با 92/1 درصد به ترتیب دارای بیشترین کاربری های دارای آسیب پذیری خیلی زیاد می باشند.
Introduction The occurrence of natural disasters such as earthquakes, in urban texture and in population density region has caused hard damage. Regarding the country’s location on the earthquake zone, the current study has studied Urmia city due to natural features and the risk of seismicity in order to identify the most important damaging factors in order to manage the urban disaster caused by an earthquake.Methodology This research is descriptive and analytical in method and applied in purpose. In the descriptive section, the results of the general census of population and housing in 1395, documents and library studies have been used, and in the Analytical section, the Network Analysis process (ANP) and fuzzy operators in ARC GIS software have been applied.Geographical area of research The study area (statistical blocks) with an area of 4854.91 ha contains 91% of the total area of Urmia city, which has a population of 727066 people (other than Golmankhaneh Town). Based on the 2016 census and based on the information obtained from statistical blocks, the rate of population and the number of families in the area were 727066 people and 222737 families, respectively. The study area includes 97.83% of the population of Urmia city.Results and discussion The highest vulnerability is in areas with a slope of more than 20% and areas with high population density are observed. Areas with very high vulnerability with 34.12%, high with 11.81%, medium with 30.47%, low with 20.89% and very low with 2.7% accounted for the area of statistical blocks. In general, it can be said that 45.93% of the study area is vulnerable based on the criteria used in the analysis.Conclusion In vulnerable earthquake zoning in Urmia, 5 vulnerable classes were obtained. The very high vulnerability class in the Zone 2 urban area with an area of 341.09 hectares (13.19%) has the most vulnerable uses, Zone 3 with 8.24%, Zone 1 with 7.57%, Zone 4 with 2.76% and Zone 5 with 1.92% have the most uses with very high vulnerabilities, respectively.
احدنژاد روشنی، محسن؛ مهدی، قرخلو و زیاری، کرامت الله .(1389). مدلسازی آسیب پذیری ساختمانی شهرها در برابر زلزله با استفاده از فرایند تحلیل سلسه مراتبی در محیط سیستم اطلاعات جغرافیایی نمونه شهر زنجان. مجله جغرافیا و توسعه، 8 (19)، 198-171.
امینیان، امیر احمد؛ صیامی، قدیر؛ تقی نژاد، کاظم و زاهدی کلاکی، ابراهیم .(1394). تخمین آسیب پذیری شهرگرگان در برابر زلزله با تاکید بر فاصله از تأسیسات شهری با روش منطق فازی. فصلنامه علمی پژوهشی مدیریت بحران، 4 (2)، 54-47.
زبردست، اسفندیار.(1389).کاربرد فرایند تحلیل شبکهای(ANP) در برنامهریزی شهری و منطقهای. نشریه هنرهای زیبا-معماری و شهرسازی، 2(41)90-79.
شمایی، علی و پور احمد، احمد .(1391). بهسازی و نوسازی شهری از دیدگاه جغرافیا. چاپ پنجم، تهران: انتشارات دانشگاه تهران.
عبدالهی، مجید .(1383). مدیریت بحران در نواحی شهری. چاپ سوم، تهران: انتشارات سازمان شهرداریها و دهیاریهای کشور.
قلندرزاده، عباس؛ معتمد، رامین و عبدالهی شریف، جعفر. (1382). بررسی خطر لرزه در شهر ارومیه. چهارمین کنفرانس بین المللی زلزله شناسی و مهندسی زلزله، ایران.
محمدپور، صابر ؛ زالی، نادر و پوراحمد، احمد .(1395). تحلیل شاخصهای آسیب پذیری در بافتهای فرسودۀ شهری با رویکرد مدیریت بحران زلزله (مطالعة موردی: محلة سیروس تهران). پژوهشهای جغرافیای انسانی، 45 (1) 45، 52-3.
مرکز آمار ایران .(1393). تعاریف و مفاهیم استاندارد آماری (برای استفاده در طر حها و گزارش های آماری). ویرایش سوم، چاپ اول.
مصیبزاده، علی و پورمحمدی، محمدرضا .(1385). آسیب آسیب پذیری شهرهای ایران در برابر زلزله و نقش مشارکت محلهای در امداد رسانی آنها. نشریه نشریة جغرافیا و توسعه، 6 (12)، 144-117.
Alizadeh, M., Hashim, M., Alizadeh, E., Shahabi, H., Karami, M., Beiranvand Pour, A., Pradhan, B., & Zabihi, H. (2018). Multi-Criteria Decision Making (MCDM) Model for Seismic Vulnerability Assessment (SVA) of Urban Residential Buildings. ISPRS International Journal of Geo-Information, 7(11), 444,1-22.
Chen, J., & Yang, Y. (2011). A fuzzy ANP-based approach to evaluate region agricultural drought risk. Procedia Eng, 23, 822–827.
Daneshvar, M., Mansouri, R., Rezayi, S., & Khosravi, S. (2013). Earthquake vulnerability zonation of Mashhad urban fabric by combining the quantitative models in GIS, northeast of Iran. International Journal of Environmental Protection and Policy 1(4), 44-49.
Ebert, A., Kerle, N. (2008). Urban Social Vulnerability Assessment Using Object-oriented Analysis of Remot Sensing and GIS Data, A Case Study for Tegucigalpa. Honduras. Remote Sensing and Spatial Information Sciences, 30(7), 1307-1311.
Feizizadeh, B., & Ghorbanzadeh, O. (2017). GIS-based interval pairwise comparison matrices as a Novel approach for optimizing an analytical hierarchy process and multiple criteria weighting. GI_Forum, 1, 27–35.
Garcia-Melon, M., Ferris-Onate, J., Aznar-Bellver, J., Aragonés-Beltran, P., & Rocio Poveda Bautista .(2008). Farmland appraisal based on the analytic network Process. Journal of Global Optimization, 42, 143-155.
Ghorbanzadeh, O., Feizizadeh, B., & Blaschke, T. (2018). Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomatics, Natural Hazards and Risk, 9(1). 127-151.
Hwa Wang, J. (2007). Urban Seismology in the Taipei Metropolitan Area: Review and Prospective, Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan.
Kreimer, A., Arnold, M., & Carlin, A. (2003). Building Safer Cities: The Future of Disaster Risk, The World Bank Disaster Management Facility Washington, D.C.
Lantada, N., Pujades, L., & Barbat, A. (2008). Vulnerability Index and Capacity Spectrum, Based Method for Urban Seismic Risk, Evaluation Journal of Nathazards, 51(3), 501-524, Doi 10-007 11069 007-9212-4.
Lyu, Hai-Min, Jack Shuilong, Sh., & Arulrajah, A. (2018). Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China." Sustainability 10(2), 304.
Moinfar, A. A., Naderzadeh, A., & Nabavi, M. H. (2012). New Iranian Seismic Hazard Zoning Map for New Edition Edition of Seismic Code and Its Comparison with Neighbor Neighbor Countries. In 15th World Conference on Earthquake Engineering.
Murata, M. (2014). A Science Instruction for the Prevention and Reduction of 2020 Nankai Earthquake Disaster in Tokushima, Southwest Japan, Procedia -Social and Behavioral Sciences, 143, 404–406.
Naess, P. (2001). Urban Planning and Sustainable Development. European Planning Studies, 9(4), 503-524.
Phuong, Nguyen Hong, & Nguyen Ta Nam. (2018). Development of a Web-GIS based Decision Support System for earthquake warning service in Vietnam. VIETNAM JOURNAL OF EARTH SCIENCES, 40(3), 193-206.
Piran, P. (1990). Theoretical Approaches in the Urban Sociology and Urbanization, Historical Schools. Economical – Polotical Information, 49-50, 62-64.
Rivas-Medina, A., Gaspar-Escribano, J. M., Benito, B., & Bernabé, M. A. (2013). The role of GIS in urban seismic risk studies: application to the city of Almería (southern Spain). Natural Hazards and Earth System Sciences, 13(11), 2717-2725.
Saaty, TL. (1990). How to make a decision: the analytic hierarchy process. Eur J Oper Res, 48(1),9–26.
Saaty, TL. (1996). Decision making with dependence and feedback: the analytic network process. Vol. 4922, Pittsburgh (PA): RWS publications;
Saaty, TL. (1996). The analytic network process. Pittsburgh (PA): RWS Publications.
Saaty, TL. (1999). Fundamentals of the Analytic Network Process. Proceedings of ISAHP 1999, Kobe, Japan.
Sarmah, T., & Sutapa, D. (2018). Earthquake Vulnerability Assessment for RCC Buildings of Guwahati City using Rapid Visual Screening. Procedia engineering, 212, 214-221.
Yamazaki, F. (2005). Building Damage Mapping of the Ban, Iran, Earthquake Using ENVISAT /ASAR Intensity Imagery. Earthquake Spectra, 21(1), S285-S294, 12.
_||_