تحلیل اثرات کاربریهای اراضی همجوار بر قیمت مسکن (مطالعه موردی: منطقه 7 شهر تهران)
محورهای موضوعی : مطالعات برنامه ریزی شهری و منطقه ایابراهیم فرهادی 1 , کرامت اله زیاری 2 , احمد پوراحمد 3
1 - دانشجوی دکتری جغرافیا و برنامه ریزی شهری، دانشگاه تهران، تهران، ایران
2 - استاد جغرافیا و برنامه ریزی شهری، دانشگاه تهران، تهران، ایران
3 - استاد جغرافیا و برنامه ریزی شهری، دانشگاه تهران، تهران، ایران
کلید واژه: کاربری اراضی, منطقه 7 شهرداری تهران, اقتصاد مسکن, مدل رگرسیون جغرافیایی وزن دار,
چکیده مقاله :
مسکن در زمره اساسیترین و حساسترین بخشها در برنامهریزی توسعه اقتصادی و اجتماعی محسوب میشود.درواقع مسکن ،خردترین و کوچکترین شکل تجسم کالبدی رابطه متقابل انسان و محیط بوده و تبلور فضایی کارکرد حیاتی سکونت انسانی در ایفاء نقشهای اساسی وی میباشد. پژوهش حاضر از نوع هدف کاربردی میباشد. ازنظر ماهیت، رویکرد اصلی حاکم بر روند مقاله حاضر، توصیفی – تحلیلی میباشد و با توجه به موضوع تحقیق، حوزه مطالعاتی و ماهیت موضوع، از روشها و فنون کمی (مدل رگرسیون وزندار جغرافیایی) استفادهشده است. عوامل متعددی بر قیمت مسکن تأثیر میگذارند که یکی از این عوامل، انواع کاربریهای اراضی میباشد که در تعین قیمت مسکن نقش کلیدی دارد. در منطقه 7 شهر تهران با توجه به اختلاط کاربری و ویژگیهای خاصی که بر کاربریهای این منطقه حاکم است به سنجش اثرات هر یک از کاربریها بر قیمت مسکن پرداختیم تا با شناسایی میزان اثرات هر یک از انواع کاربریها بر قیمت مسکن بتوان برنامهریزی مناسبی در سطح منطقه برای مسکن و اقتصاد مسکن انجام داد. با توجه به اینکه مبحث اقتصاد مسکن یک موضوع فراگیر و بینرشتهای میباشد (سیاست، اقتصاد، مدیریت، جغرافیا و ...) بنابراین این مقاله بیشتر بر روی تأثیر عوامل جغرافیایی (انواع کاربریها) بر قیمت مسکن بحث میکند که درنهایت مشخص شد که دسترسی به حملونقل، پایانه و انبارداری شهری با R2 87/، کاربریهای خدمات شهری با R2 87/، کاربری سبز و پارکها با R2 80/، کاربریهای تجاری و اداری با R2 72/، به ترتیب بیشترین تأثیر را بر قیمت مسکن در سطح منطقه دارند.
Housing is considered to be the most basic and most sensitive part in the planning of economic and social development. Housing is the smallest and smallest form of physical embodiment of human-environment interaction, and spatial crystallization is the vital function of human habitation in its core roles. The present study is an applied target type. Regarding the nature, the main approach to the present paper is descriptive-analytical and according to the research subject, field of study and the nature of the subject, quantitative methods and techniques (geographic weights regression model) have been used. Several factors affect the price of housing, one of which is the type of land use that plays a key role in determining housing prices. In area 7 of Tehran, due to the combination of user and specific features that govern the use of this area, we have been studying the effects of each usage on the price of housing, so that by identifying the effects of each type of usage on the price of housing, planning in the region level can be made. For housing and housing economy. Given that the topic of housing economics is an inclusive and interdisciplinary topic (politics, economics, management, geography, etc.), this article further discusses the impact of geographic factors (types of uses) on housing prices, which ultimately revealed that access Urban transportation, terminals and warehousing with R2 87 /, Utilization of urban services with R2 87 /, Green utilization and parks with R2 / 80, Commercial and office applications with...
Abedin Dercoosh, Saeed (2009), Housing Economics in Iran, Abadi Journal, Nos. 61 and 62 (Winter 2008 and Spring 2009). (In Persian)
Abedin Dercoosh, Saeed and Rahimian, Sarah (2009), "Analysis of Factors Influencing Housing Prices in Urban Areas of Iran during the Period (2001-1999) with Emphasis on Urban Grouping, Economics of Housing Journal, No. 46, pp. 11-36. (In Persian)
Akbari, Nemat Ollah, Emadzadeh, Mostafa Var Razavi, Ali (2004), Factors Affecting Housing Prices in Mashhad; Spatial Econometric Approach in Hadanik Method, Journal of Economic Research, Vol. 11 & 12, pp. 81-99 . (In Persian)
Anselin, L., 1988, Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic Publishers.
Azizi, Mohammad Mahdi (2004), Position of Housing Indicators in the Housing Planning Process, Beautiful Arts Journal, No. 17. (In Persian)
Bagheri, N., Holt, A., & Benwell, G. L.( 2009), Using geographically weighted regression to validate approaches for modelling accessibility to primary health care, Applied Spatial Analysis and Policy, Vol.2, No.3, pp. 177-194.
Cahill, M., & Gordon, M.( 2007), Using geographically weighted regression to explore local crime patterns, Social Science Computer Review, Vol.25, No.2, pp. 174-193.
Cardozo, O.D., García-Palomares, J.C., & Gutiérrez, J.( 2012), Application of geographically weighted regression to the direct forecasting of transit ridership at station-l evel, Applied Geography, Vol. 34, pp. 548-558.
Chen, D.-R., & Truong, K.( 2012), Using multilevel modeling and geographically weighted regression to identify spatial variations in the relationship between place-level disadvantages and obesity in Taiwan, Applied Geography, Vol.32, No.2, pp. 737-745
Clement, F., Orange, D., Williams, M., Mulley, C., & Epprecht, M.( 2009), Drivers of afforestation in Northern Vietnam: assessing local variations using geographically weighted regression, Applied Geography, Vol.29, No.4, pp. 561-576.
Dajian & Peter( 2006), 2010 World Expo and Urban Life Quality in Shanghai in Terms of Sustainable Development Chinese, Journal of Population, Resources and Environment, Vol. 4, No.1.
Fotheringham, A. S., Brunsdon, C., & Charlton, M. E.( 2002), Geographically weighted regression: The analysis of spatially varying relationships, Chichester: Wiley.
Ghafourian, Mitra and Hesari, Elham (1395), Investigating the Factors and Variables of Land Effective on the Satisfaction of Residents from the Environment, Quarterly Journal of Urban Studies, Vol. 5, No. 18.
Gao, J., & Li, S.( 2011), Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using geographically weighted regression, Applied Geography, Vol.31, No.1, pp. 292-302.
Gholizadeh, Ali Akbar (2008), Theory of Housing Prices in Iran in Simple Language, Hamadan: Noor Alam Publications. (In Persian)
Hadayeghi, A., Shalaby, A. S., & Persaud, B. N., 2010, Development of planning level transportation safety tools using geographically weighted poisson regression, Accident Analysis and Prevention, Vol.42, No.2, pp. 676-688.
Haji Nejad, Ali, Rafieian, Mojtaba, and Zamani, Hussein (2010). Examination of individual variables affecting citizens' satisfaction with the quality of life environment (case study: comparison of old and new text in Shiraz city), Geography and Development, No. 17 .
Hanham, R., & Spiker, J. S.(2005), Urban sprawl detection using satellite imagery and geographically weighted regression. In R. R. Jensen, J. D. Gatrell, & D. D. McLean (Eds.), Geo-spatial technologies in urban environments (pp. 137-151), Berlin: Springer.
Iranian Statistical Center, Abstract The results of the survey on cost and income of rural and urban households in 2013, Spring 2014. (In Persian)
Iranian Statistics Center, Population and Housing Census, 2006 and 2011. (In Persian)
Lloyd, C. D., (2010), Local models for spatial analysis, Boca Raton: Taylor & Francis.
Luo, J., & Wei, Y. H. D.( 2009), Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing, Landscape and Urban Planning, Vol.91, No.2, pp. 51-64.
Mennis, J., (2006), Mapping the results of geographically weighted regression, The Cartographic Journal,Vol.43, No.2, pp. 171-179.
Naji Meidani, AA Fallahi, M. A Zabihi, M. (2010), Investigating the dynamic effect of macroeconomic factors on housing price fluctuations in Iran during the period (1990 to 2007), knowledge and development.
Ogneva-Himmelberger, Y., Pearsall, H., & Rakshit, R.( 2009), Concrete evidence & geographically weighted regression: a regional analysis of wealth and the land cover in Massachusetts, Applied Geography, Vol.29, No.4, pp. 478-487.
Pineda, N. B., Bosque-Sendra, J., Gómez-Delgado, M., & Franco, R.( 2010), Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression, Applied Geography, Vol.30, No.4, pp. 576-591.
Pourmohammadi, Mohammad Reza (2009), Housing Planning. Tehran University Press. (In Persian)
Rafiean, Mojtaba; Asgari, Ali; and Asgarizadeh, Zahra. (2009), Satisfaction of Citizens from Urban Living Environment, Journal of Environmental Science, seventh year, first issue. (In Persian)
Tu, J.( 2011), Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression, Applied Geography, Vol.31, No.1, pp. 376-392.
Tu, J., & Guo, X.( 2008), Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation, Science of the Total Environment, Vol.407, No.1, pp. 358-378.
Zanganeh Shahraki, Saeed (2016), Land Economics and Urban Housing, Masters of Geography and Urban Planning. (In Persian)
Zhang, L., & Shi, H.( 2004), Local modeling of tree growth by geographically weighted regression, Forest Science, Vol.50, No.2, pp. 225-244.
Zhang, P., Wong, D. W., So, K. L., & Lin, H.( 2012), An exploratory spatial analysis of western medical services in Republican Beijing, Applied Geography, Vol.32, No.2, pp. 556-565.
Smith, M. J., Goodchild, M. F., & Longley, P. A.( 2009), Geospatial analysis. A comprehensive guide to principles, techniques and software tools. Leicester: Matador.
_||_