راه¬كارهاي مقابله با تنش¬ شوری و اکسیداتیو در گیاهان زراعي
محورهای موضوعی : آلودگی های محیط زیست (آب، خاک و هوا)اسماعیل قلی نژاد 1 * , رضا درویش زاده 2 , عباس ابهری 3
1 - دانشیار، گروه علمي علوم کشاورزي، دانشگاه پيام نور، تهران، ايران. *(مسوول مکاتبات)
2 - استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه اروميه، ارومیه، ايران.
3 - استادیار، گروه علمي علوم کشاورزي، دانشگاه پيام نور، تهران، ايران.
کلید واژه: آنتی اکسیدان, اکسیداتیو, شورزی, شوری, گلیکولیت, نمک.,
چکیده مقاله :
زمینه و هدف: یک چالش بزرگ در کشاورزی جهان تولید محصولات غذایی بیشتر برای 3/2 میلیارد نفر دیگر تا سال 2050 در سراسر جهان است. شوری تنش عمده¬ای است که عرضه محصولات غذایی را محدود می¬کند. مساحت كل زمین¬ها حدود 2/13 ميليارد هكتار است كه 7 ميليارد هكتار از آن قابـل كشت و 5/1 ميليارد هكتار زیر كشت است و حدود 23 درصد از زمین¬های زیر کشت در سراسر جهان (حدود 345 میلیون هکتار) تحت تأثیر تنش شوری قرار دارد و روز به روز بر میزان آن افزوده می¬شود. گیاهان را میتوان به دو نوع شورزیها و گلیکوفیتها طبقهبندی کرد و اکثر گونه¬های زراعی عمده به این دسته دوم تعلق دارند. مقاله حاضر با هدف بررسی پژوهش¬های علمی مرتبط با اثرات، سازوکار¬های تحمل، روش¬های پژوهش، صفات مهم قابل اندازه¬گیری، مدیریت و کنترل تنش شوری و اکسیداتیو در گیاهان زراعي ارائه می¬شود. روش بررسی: مقاله حاضر یک مقاله مروری می¬باشد که با جستجو در مقاله¬های مرتبط در پایگاه¬های معتبر (Google scholar, Web of Science, PubMed, Scopus, SID) بدست آمده است. یافته¬ها: شوری روی خصوصیات مختلف گیاهان مانند صفات فیزیولوژیک، متابولیک، رشد و نمو، جوانه¬زنی، کمیت و کیفیت گیاه تاثیرات نامطلوبی دارد. مهمترین صدمات ناشی از تنش شوري شامل برهم خوردن توازن یونی ناشی از کاهش جذب یون¬هاي ضـروري، انباشتگی یون¬هاي مضر و کم آبی ناشی از کاهش جذب آب می¬باشد که باعث کاهش سنتز پروتئین، تعرق، انتقال یـون و در نهایـت کـاهش عملکرد نهایی می¬شود. از سازوکار¬های تحمل به تنش شوری می¬توان به هوموستازی یونی، انباشت املاح سازگار و حفاظت اسمزی، تنظیم آنتی اکسیدانی، پلی آمین¬ها، اکسید نیتریک و تنظیم هورمونی تحمل به شوری اشاره کرد. در شرایط تنش گونه¬های فعال اکسیژن مانند رادیکال¬های سوپراکسید، اکسیژن منفرد و رادیکال هیدروکسیل تولید می¬شود که باعث صدمه به ساختار سلولی، پروتئین¬ها، غشاء سلولی، کربوهیدرات¬ها، اسیدهای نوکلوئیک و در نهایت مرگ سلول می¬شود. بحث و نتیجه¬گیری: آنتی اکسیدان¬های آنزیمی یا غیر آنزیمی نقش بسیار مهمی در حفاظت گیاهان در مقابله با آسیب¬های اکسیداتیو دارند. سوپر اکسید دیسموتاز، کاتالاز، پروکسیداز، آسکوربات پراکسیداز، گلوتاتیون ردوکتاز از آنتی¬اکسیدان¬های آنزیمی و اسید اسکوریک، گلوتاتیون، کاروتنوئیدها و توکوفرول¬ها از آنتی اکسیدان¬های غیرآنزیمی محسوب می¬شوند که می¬توانند صدمات ناشی از گونه¬های فعال اکسیژن را کاهش دهند.
Background and Objective: A major challenge in global agriculture is to produce more food for another 2.3 billion people by 2050 worldwide. Salinity is a major stress that limits the supply of food products. The total land area is about 13.2 billion hectares, of which 7 billion hectares are arable and 1.5 billion hectares are under cultivation, and about 23% of the cultivated lands around the world (about 345 million hectares) are affected by salinity stress and its amount is increasing day by day. Plants can be classified into two types, halophytes (which can resist salinity) and glycophytes (which cannot resist salinity and eventually die), and most major crops belong to this second category. The purpose of this article is to review scientific research related to the effects, mechanisms of tolerance, research methods, important measurable traits, management and control of salinity and oxidative stress in agricultural plants. Material and Methodology: This article is a review article that was obtained by searching related articles in reliable sites (Google scholar, Web of Science, PubMed, Scopus, SID. Findings: Salinity have adverse effects on various plant characteristics such as physiological, metabolic, growth, germination, strength, quantity and quality of plants. The most important damages caused by salinity stress include ion imbalance due to reduced absorption of necessary ions, accumulation of harmful ions and dehydration due to decreased water absorption which reduces protein synthesis, transpiration, ion transfer and finally decreases seed yield. Mechanisms of salinity stress tolerance include ionic homeostasis, compatible salt accumulation and osmotic protection, antioxidant regulation, polyamines, nitric oxide, and hormonal regulation of salinity tolerance. Under stress, reactive oxygen species such as superoxide radicals, singlet oxygen and hydroxyl radical are produced, which damage cell structure, proteins, cell membranes, carbohydrates, nucleic acids, and eventually cause cell death. Discussion and Conclusion: Enzymatic or non-enzymatic antioxidants play a very important role in protecting plants against oxidative damage. Superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase are enzymatic antioxidants and ascorbic acid, glutathione, carotenoids and tocopherols are non-enzymatic antioxidants which can reduce the damage caused by reactive oxygen species.
1. FAO. Food and Agriculture Organization. FAO statistical yearbook: FAO; 2012.
2. Momeni A. Geographical distribution and salinity levels of soil resources of Iran. Iranian Journal of Soil Research. 2011; 24(3): 203-15.
3. Farrokhi A, Galshi A. Investigation of the effect of salinity, seed size and their interactions on intensity, seed conversion efficiency and soybean seedling growth. Agricultural Sciences of Iran. 2004; 36(5): 124-32.
4. Saeed F, Kang SA, Amin M. Performance of genotypes at different sowing dates on yield and quality traits in Gossypium hirsutum. International Journal of Agriculture and Crop Sciences. 2014; 7(5): 274.
5. Mir Mohammadi Meybodi SA, Gharayazi MB. Physiological and correctional aspects of salinity stress of crops: Isfahan University of Technology Publications; 2003.
6. Khoshghoftarmanesh AH. Principles of Plant Nutrition: Isfahan University of Technology Publications; 2008.
7. Faraji S, Hashemi-Petroudi SH, Najafi-Zarrini H, Ranjbar G. Characterization and expression profiling of AlPKL gene in response to salinity stress and recovery conditions in halophyte Aeluropus littoralis. Crop Biotechnology. 2018; 7(20):13-27.
8. Sorkhi F, Fateh M. The effect of seed pretreatment with salicylic acid on germination indices of rapeseed seedlings under salinity stress. Journal of Seed Research. 2018; 7(3): 17-26.
9. Naidoo G, Naidoo Y. Effects of salinity and nitrogen on growth, ion relations and proline accumulation in Triglochin bulbosa. Wetlands Ecology and Management. 2001; 9: 491-7.
10. Munns R. Comparative physiology of salt and water stress. Plant, cell & environment. 2002; 25(2): 239-50.
11. James RA, Blake C, Byrt CS, Munns R. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. Journal of Experimental Botany. 2011; 62(8): 2939-47.
12. Rahnama A, James RA, Poustini K, Munns R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology. 2010; 37(3): 255-63.
13. Munns R. Genes and salt tolerance: bringing them together. New phytologist. 2005; 167(3): 645-63.
14. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008; 59: 651-81.
15. Yeo A, Flowers T. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Functional Plant Biology. 1986; 13(1): 161-73.
16. Carden DE, Walker DJ, Flowers TJ, Miller AJ. Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant physiology. 2003; 131(2): 676-83.
17. Verslues PE, Agarwal M, Katiyar‐Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal. 2006; 45(4): 523-39.
18. Kishor PK, Sangam S, Amrutha R, Laxmi PS, Naidu K, Rao KS, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science. 2005: 424-38.
19. Silveira JAG, de Almeida Viégas R, da Rocha IMA, Moreira ACdOM, de Azevedo Moreira R, Oliveira JTA. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology. 2003;160(2):115-23.
20. Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. The Plant Cell. 2009; 21(4): 1212-29.
21. Mansour MMF, Ali EF. Glycinebetaine in saline conditions: an assessment of the current state of knowledge. Acta Physiologiae Plantarum. 2017; 39:1-17.
22. Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, et al. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology. 2009; 166(2): 146-56.
23. Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proceedings of the National Academy of Sciences. 1994; 91(1): 306-10.
24. Ito T, Asano Y, Tanaka Y, Takabe T. Regulation of biosynthesis of dimethylsulfoniopropionate and its uptake in sterile mutant of Ulva pertusa (chlorophyta) 1. Journal of Phycology. 2011; 47(3): 517-23.
25. Zapata PJ, Serrano M, García-Legaz MF, Pretel M, Botella M. Short term effect of salt shock on ethylene and polyamines depends on plant salt sensitivity. Frontiers in Plant Science. 2017; 8: 855.
26. Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of botany. 2015; 115(3): 433-47.
27. Ferjani A, Mustardy L, Sulpice R, Marin K, Suzuki I, Hagemann M, et al. Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiology. 2003; 131(4): 1628-37.
28. Pommerrenig B, Papini-Terzi FS, Sauer N. Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiology. 2007; 144(2): 1029-38.
29. Eggert E, Obata T, Gerstenberger A, Gier K, Brandt T, Fernie AR, et al. A sucrose transporter‐interacting protein disulphide isomerase affects redox homeostasis and links sucrose partitioning with abiotic stress tolerance. Plant, Cell & Environment. 2016; 39(6): 1366-80.
30. Boriboonkaset T, Theerawitaya C, Yamada N, Pichakum A, Supaibulwatana K, Cha-Um S, et al. Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma. 2013; 250: 1157-67.
31. Dos Santos TB, Budzinski IG, Marur CJ, Petkowicz CL, Pereira LF, Vieira LG. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry. 2011; 49(4): 441-8.
32. Henry C, Bledsoe SW, Griffiths CA, Kollman A, Paul MJ, Sakr S, et al. Differential role for trehalose metabolism in salt-stressed maize. Plant Physiology. 2015; 169(2): 1072-89.
33. Ryu H, Cho Y-G. Plant hormones in salt stress tolerance. Journal of Plant Biology. 2015; 58: 147-55.
34. Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, et al. Jasmonates: multifunctional roles in stress tolerance. Frontiers in Plant Science. 2016; 7: 813.
35. Formentin E, Barizza E, Stevanato P, Falda M, Massa F, Tarkowskà D, et al. Fast regulation of hormone metabolism contributes to salt tolerance in rice (Oryza sativa spp. Japonica, L.) by inducing specific morpho-physiological responses. Plants. 2018; 7(3): 75.
36. Talla SK, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. Journal of Experimental Botany. 2016; 67(6): 1839-51.
37. Zwack PJ, Rashotte AM. Interactions between cytokinin signalling and abiotic stress responses. Journal of Experimental Botany. 2015; 66(16): 4863-71.
38. Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313-24.
39. Solis CA, Yong MT, Vinarao R, Jena K, Holford P, Shabala L, et al. Back to the wild: on a quest for donors toward salinity tolerant rice. Frontiers in Plant Science. 2020; 11: 323.
40. Wang F, Jing W, Zhang W. The mitogen-activated protein kinase cascade MKK1–MPK4 mediates salt signaling in rice. Plant Science. 2014; 227: 181-9.
41. Qin H, Li Y, Huang R. Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences. 2020; 21(21): 8385.
42. Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research. 2018; 209: 21-32.
43. Yasmeen T, Ahmad A, Arif MS, Mubin M, Rehman K, Shahzad SM, et al. Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiology and Biochemistry. 2020; 156: 242-56.
44. Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG. Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology. 2020; 62(5): 563-80.
45. Sapre S, Gontia-Mishra I, Tiwari S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiological Research. 2018; 206: 25-32.
46. Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environmental Science and Pollution Research. 2018; 25: 23236-50.
47. Chu TN, Tran BTH, Van Bui L, Hoang MTT. Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC research notes. 2019; 12(1): 1-7.
48. Fang S, Hou X, Liang X. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science. 2021; 12: 667458.
49. Fageria NK. Increasing the yield of crops.: Publications University of Mashhad; 1998. p. 460.
50. Abhari A, Shamsabadi M. Physiological study of salinity tolerance of wheat cultivars. . Fourth International Conference on Agriculture, Natural Resources and Sustainable Environment 2018.
51. Molazem D. Investigation of yield, yield components and indices of salt tension tolerance in maize cultivars. Crop Physiology Journal. 2018; 10(39): 93-111.
52. Majidi-Mehr A, Amiri-Fahliani R. Evaluation of reaction of some rice (Oryza sativa L.) genotypes to salinity stress at seedling stage. Environmental Stresses in Crop Sciences. 2020; 13(4): 1293-306.
53. Khodadadi R, Nasrabadi R, Olamaee M, Movahedi-Naini S. Effect of Azotobacter and Azospirillum on growth and physiological characteristics of barley (Hordeum vulgare) under salinity stress. Journal of Water and Soil. 2020; 34(3).
54. Abd El-Moneim D, Alqahtani M, Abdein M, Germoush M. Drought and salinity stress response in wheat: physiological and TaNAC gene expression analysis in contrasting Egyptian wheat genotypes. Journal of Plant Biotechnology. 2020; 47: 1-14.
55. Noreen Z, Zulfiqar AR, Saqib M. Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes. Brazilian Archives of Biology and Technology. 2020; 63.
56. Ibrahim H, Eldeen M, Adam Ali AY, Zhou G, Ibrahim Elsiddig AM, Zhu G, et al. Biochar application affects forage sorghum under salinity stress. Chilean Journal of Agricultural Research. 2020; 80(3): 317-25.
57. Gholinezhad A, Majlisi A, Talibzadeh s, Salmanpour v, Sajedi N. The effect of different levels of salinity stress on seedling growth of safflower cultivars under greenhouse conditions. New Agriculture Findings. 2014; 8(2): 173-83.
58. Talei D. Morphophysiological reactions of Nigella sativa L. to salicylic acid under salinity stress. Environmental Stresses in Crop Sciences. 2019; 12(3).
59. Mohammadi Z, Motallebi Azar AR, Zaree Nahandi F, Tarinejad AR, Gohari GR. Effect of sodium nitroprusside on physiological and biochemical response of Solanum tuberosum cv. Agria under salinity stress and in vitro condition. Journal of Plant Production. 2019; 26(1): 155-67.
60. Nabati J, Kafi M, Masoumi A, Zare Mehrjerdi M, Boroumand Rezazadeh E, Khaninejad S. Salinity stress and some physiological relationships in Kochia (Kochia scoparia). Environmental Stresses in Crop Sciences. 2018; 11(2): 401-12.
61. Nazarpoor S, Salimi A, Zaidi S. Evaluating the effect of the salinity stress of different salts of soil salts in Iran on some of the physiological and biochemical responses of Harmala (Peganum harmala L.). Journal of Plant Process and Function. 2020; 9(39): 311-29.
62. Mousavi SA, Aghighi Shahverdi M. Nutrient effect of seed priming with selenium on germination and physiological characteristics of urban ballast under salinity stress. Journal of Seed Research. 2021; 10(2): 65-76.
63. Naveed M, Sajid H, Mustafa A, Niamat B, Ahmad Z, Yaseen M, et al. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustainability. 2020; 12(3): 846.
64. Abd El-Hameid AR, Sadak MS. Impact of glutathione on enhancing sunflower growth and biochemical aspects and yield to alleviate salinity stress. Biocatalysis and Agricultural Biotechnology. 2020; 29: 101744.
65. Pishbin N. The role of osmotic modulators in salinity and drought stress. Conference of Agricultural Regions, Axis of Growth and Development 2009. p. 103-10.
66. Azooz MM, Ahmad P. Legumes under environmental stress: yield, improvement and adaptations: John Wiley & Sons Inc.; 2015.
67. Ahmad P, Azooz MM, Prasad MNV. Ecophysiology and responses of plants under salt stress: Springer; 2013.
68. Suo J, Zhao Q, David L, Chen S, Dai S. Salinity Response in Chloroplasts: Insights from Gene Characterization. Int J Mol Sci. 2017; 18(5).
69. Namvar A, Hadi H, Seyed Sharifi R. Role of exogenous phytoprotectants in mitigation of adverse effects of abiotic stresses. Journal of Iranian Plant Ecophysiological Research. 2018; 12(48): 103-28.
70. Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology. 2021; 19(1): 1-18.
71. Salehi-Lisar SY, Bakhshayeshan-Agdam H. Drought stress in plants: causes, consequences, and tolerance. Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry. 2016: 1-16.
72. Hasheminasab H, Assad MT, Aliakbari A, Sahhafi SR. Influence of drought stress on oxidative damage and antioxidant defense systems in tolerant and susceptible wheat genotypes. Journal of Agricultural Science (Toronto). 2012; 4(8): 20-30.
73. Ahmad P. Water stress and crop plants: a sustainable approach: John Wiley & Sons. 2016.
74. Sartip H, Sirousmehr AR. Evaluation of salicylic acid effects on growth, yield and some biochemical characteristics of cumin (Cuminum cyminum L.) under three irrigation regimes. Environmental Stresses in Crop Sciences. 2017; 10(4): 547-58.
75. Hayat S, Ahmad A, Ahmad A. Brassinosteroids: bioactivity and crop productivity: Springer Science & Business Media; 2003.
76. Yuan L, Shu S, Sun J, Guo S, Tezuka T. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynthesis Research. 2012; 112: 205-14.
77. Li KR, Feng C. Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum. 2011; 33: 1293-300.
78. Farooq M, Nawaz A, Chaudhary M, Rehman A. Foliage‐applied sodium nitroprusside and hydrogen peroxide improves resistance against terminal drought in bread wheat. Journal of Agronomy and Crop Science. 2017; 203(6): 473-82.
79. Lei Y, Yin C, Ren J, Li C. Effect of osmotic stress and sodium nitroprusside pretreatment on proline metabolism of wheat seedlings. Biologia Plantarum. 2007; 51: 386-90.
80. Armin M, Miri HR. Effects of glycine betaine application on quantitative and qualitative yield of cumin under irrigated and rain-fed cultivation. Journal of Essential Oil Bearing Plants. 2014; 17(4): 708-16.
81. Zhang H, Liu X-L, Zhang R-X, Yuan H-Y, Wang M-M, Yang H-Y, et al. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Frontiers in plant science. 2017; 8: 1580.
82. Ahmad F, Singh A, Kamal A. (2017). “Ameliorative effect of salicylic acid in salinity stressed Pisum sativum by improving growth parameters, activating photosynthesis and enhancing antioxidant defense system”. Bioscience Biotechnology Research Communications. 10: 481-9.
83. Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P. Influence of Exogenous Salicylic Acid and Nitric Oxide on Growth, Photosynthesis, and Ascorbate-Glutathione Cycle in Salt Stressed Vigna angularis. Biomolecules. 2020; 10(1): 42.
84. Kaur, H., Sirhindi, G., Bhardwaj, R., Alyemeni, M., Siddique, KH., & Ahmad, P., (2018). 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea. Scientific Reports. 8(1): 1-13.
85. Alam P, Albalawi TH, Altalayan FH, Bakht MA, Ahanger MA, Raja V, et al. 24-Epibrassinolide (EBR) confers tolerance against NaCl stress in soybean plants by up-regulating antioxidant system, ascorbate-glutathione cycle, and glyoxalase system. Biomolecules. 2019; 9(11): 640.
86. Jin X, Liu T, Xu J, Gao Z, Hu X. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology. 2019; 19(1): 1-15.
87. Shams M, Ekinci M, Ors S, Turan M, Agar G, Kul R, et al. Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants. 2019; 25: 1149-61.
88. Kaya, C., Higgs, D., Ashraf, M., Alyemeni, MN., & Ahmad, P., (2020) “Integrative roles of nitric oxide and hydrogen sulfide in melatonin‐induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination”. Physiologia plantarum. 168(2): 256-77. doi: 10.1111/ppl.12976.
89. Li H, Shi J, Wang Z, Zhang W, Yang H. H2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stress. Plant Physiology and Biochemistry. 2020; 156: 233-41.
90. Arora D, Bhatla SC. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine. 2017; 106: 315-28.
91. Mostofa MG, Hossain MA, Fujita M. Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma. 2015; 252: 461-75.
92. Ranjit SL, Manish P, Penna S. Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.). Protoplasma. 2016; 253: 101-10.
93. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science. 2014; 2: 53.
94. Rahman, A., Hossain MS, Mahmud J-A, Nahar K, Hasanuzzaman M, Fujita M. Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants. 2016; 22: 291-306.