First-Principles Study of Optical Aspects of Penta-Graphene and T-Carbon under External Stress and Hydrostatic Pressure
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department ofDepartment of Physics, Khatam Al-Anbia University, Tehran, Iran
Keywords: Density Functional Theory (DFT), Complex dielectric function, Absorption, reflectivity, Optoelectronic ,
Abstract :
In this study, we present two new carbon nano allotropes: Penta-graphene and T-Carbon. Using first-principles calculations based on Density Functional Theory (DFT), we perform an extensive analysis of their crystalline structures. We delve into their optical properties, including a detailed assessment of the optical joint density of states and both the imaginary and real parts of the complex dielectric function. We also examine the reflectivity and absorption spectra to gain a full understanding of their optical characteristics. Our study takes into account special scenarios, such as the effects of hydrostatic pressure and vertical compressive stress. The shifts in optical properties we observe correlate well with the electronic characteristics of these nanostructures. Additionally, we explore the potential applications of these materials in various optoelectronic devices. Thus, we suggest their use in creating advanced optoelectronic devices, particularly as sensors designed for specific conditions, due to their unique and tunable optical properties.
[1] C.N.R. Rao, H.S.S. Ramakrishna Matte, U. Maitra, Graphene Analogues of Inorganic Layered Materials, Angewandte Chemie International Edition, 52 (2013) 13162-13185. F. Diederich, M. Kivala, All‐Carbon Scaffolds by Rational Design, Adv. Material, 22 (2010) 803. https://doi.org/10.1002/anie.201301548
[2] A. Hirsch, The era of carbon allotropes, Nature Materials, 9 (2010) 868. https://doi.org/10.1038/nmat2885
[3] Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, G. Zou, Superhard Monoclinic Polymorph of Carbon, Physical Review Letters, 102 (2009) 175506. https://doi.org/10.1103/PhysRevLett.102.175506
[4] K. Umemoto, R.M. Wentzcovitch, S. Saito, T. Miyake, Body-Centered Tetragonal C4: A Viable sp3 Carbon Allotrope, Physical Review Letters, 104 (2010) 125504.
[5] J.-T. Wang, C. Chen, Y. Kawazoe, Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon, Physical Review Letters, 106 (2011) 075501.
https://doi.org/10.1103/PhysRevLett.106.075501
[6] M. Nayeri, P. Keshavarzian, M. Nayeri, A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube, Journal of Optoelectronic Nano Structures, 3 (2018) 15-26.
https://dorl.net/dor/20.1001.1.24237361.2018.3.1.2.3
[7] X.-L. Sheng, Q.-B. Yan, F. Ye, Q.-R. Zheng, G. Su, T-Carbon: A Novel Carbon Allotrope, Physical Review Letters, 106 (2011) 155703. http://dx.doi.org/10.1103/PhysRevLett.106.155703
[8] D. Li, K. Bao, F. Tian, Z. Zeng, Z. He, B. Liu, T. Cui, Lowest enthalpy polymorph of cold-compressed graphite phase, Physical Chemistry Chemical Physics, 14 (2012) 4347-4350.
https://doi.org/10.1039/C2CP24066A
[9] C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, J. Zhong, Four superhard carbon allotropes: a first-principles study, Physical Chemistry Chemical Physics, 14 (2012) 8410-8414.
https://doi.org/10.1039/C2CP40531H
[10] H. Alborznia, First-principle study of the strain compressive strain induced on optoelectronic aspects of 2-dimensional B2C nanostructure, Surface Review and Letters, 29 (2022) 2250078.
https://doi.org/10.1142/S0218625X22500780
[11] Zhang, S.; Zhou, J.; Wang, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Penta-Graphene: A New Carbon Allotrope. Proc. Natl. Acad. Sci., 112 (2015) 2372. https://doi.org/10.1073/pnas.1416591112
[12] H. Alborznia, M. Naseri, N. Fatahi, Buckling strain effects on electronic and optical aspects of penta-graphene nanostructure, Superlattices and Microstructures,133(2019) 106217.
https://doi.org/10.1016/j.spmi.2019.106217
[13] M. Roohollahi, M. R. Shayesteh, M. Pourahmadi, Improved Perovskite Solar Cell Performance Using Semitransparent CNT Layer. Journal of Optoelectronic Nano Structures, 8 (2023) 32-46.
https://doi.org/10.30495/jopn.2023.29770.1253
[14] H. Alborznia, M. Naseri, N. Fatahi, Pressure effects on the optical and electronic aspects of T-Carbon: A first principles calculation, Optik, 180 (2019) 125-133. https://doi.org/10.1016/j.ijleo.2018.11.077
[15] D.M. Hoat, Sh. Amirian, H. Alborznia, A. Laref, A.H. Reshak, M. Naseri, strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study, Indian Journal of physics, 95 (2021) 2365. https://doi.org/10.1007/s12648-020-01913-1
[16] H. Alborznia, DFT- based study of the strain variation effects on optical and electronic aspects of TH-carbon monolayer, International Journal of Modern Physics B, 38 (2024) 2450085.
https://doi.org/10.1142/S0217979224500851
[17] H. Alborznia, S.T. Mohammadi, Biaxial stress and strain effects on optical and electronic aspects of B2C nanostructure: a first-principles calculation, Indian Journal of physics, 32 (2022).
https://doi.org/10.1007/s12648-021-02272-1
[18] P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502(2009); computer code QUANTUM-ESPRESSO, http://www.quantum-espresso.org
[19] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,K. Schwarz, An augmented PlaneWave+Local Orbitals Program for calculating crystal properties revised edition WIEN2k 13.1 (release 06/26/2013) Wien2K users guide, ISBN 3-9501031-1-2.
[20] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-386. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865
[21] J. Heyd, G.E. Scuseria , M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207. https://doi.org/10.1063/1.1564060
[22] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B, 13 (1976) 5188-5192.
https://link.aps.org/doi/10.1103/PhysRevB.13.5188
[23] H. Ehrenreich, M.H. Cohen, Self-Consistent Field Approach to the Many-Electron Problem, Phys. Rev. 115 (1959) 786-790.
https://link.aps.org/doi/10.1103/PhysRev.115.786
[24] F. Birch, Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain, J. Geophys. Res. B 83 (1978) 1257-1268. https://doi.org/10.1029/JB091iB05p04949
[25] R. Abt, C. Ambrosch-Draxl, P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B: Condensed Matter, 194-196 (1994) 1451-145. http://www.sciencedirect.com/science/article/pii/0921452694912254
[26] S. Damizadeh, M. Nayeri, F. Kalantari Fotooh, S.fotoohi, Electronic and Optical Properties of SnGe and SnC Nanoribbons: A First-Principles Study, Journal of Optoelectronic Nano Structures, 5 (2020) 67-86.
https://dorl.net/dor/20.1001.1.24237361.2020.5.4.5.6
[27] S. Amirian, H. Alborznia, S. Yalameha, First-principles study on the stability and optoelectronic properties of the novel C6O2 nanostructure, Solid State Communications, 394 (2024) 115693.
https://doi.org/10.1016/j.ssc.2024.115693
[28] R. Yahyazadeh, Z. Hashempour. Effect of Hydrostatic Pressure on Optical Absorption Coefficient of InGaN/GaN of Multiple Quantum Well Solar Cells, Journal of Optoelectronic Nano Structures, 8 (2023) 81-107. https://doi.org/10.30495/jopn.2021.27941.1221
[29] H. Alborznia, S. Amirian, M. Nazirzadeh, Buckling variation effects on optical and electronic properties of GeP2S nanostructure: a first-principles calculation, Opt. Quant. Electron. 54 (2022) 608.
https://doi.org/10.1007/s11082-022-04055-2
[30] H. Salehi, F. A. Hoseini, First-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase, Journal of Optoelectronic Nano Structures, 4 (2019) 69-82.
https://dorl.net/dor/20.1001.1.24237361.2019.4.2.6.6