پوش انژکتیو AF-G-جبرها
محورهای موضوعی : آمارعلی محمودی 1 , محمدرضا مردان بیگی 2
1 - گروه ریاضی، واحد بینالملل ماکو، دانشگاه آزاد اسلامی، ماکو، ایران.
2 - استادیارتمام وقت / واحد علوم و تحقیقات دانشگاه آزاد اسلامی
کلید واژه: G-AF-algebra, G-W^*-algebra. G-injective envelopes, G-C^*-Liminal and post liminal algebra, G-essential simple ideal, G-C^*-algebra,
چکیده مقاله :
در این مقاله، فرض می کنیم Gیک گروه گسسته باشد که روی *^ C-جبر A عمل می کند. ثابت می کنیم که اگر AF -G-جبر A متناهی البعد باشد، آنگاه G ، A-انژکتیو است. یک نتیجه از این مطلب اینست که AF -G-جبرهاینامتناهی البعد در رسته ی AF -G-جبرها و نگاشتهای کاملا مثبتG-همورد دارای G-پوش انژکتیو نمی باشند. همچنین نشان خواهیم داد که اگر Aیک C^*-G جبر ساده اساسی جدایی پذیر و overline{A_G}، فضای کاملا منظم یکنوای A و I(A_G)، پوش انژکتیو A، باشد، آنگاه گزارههای زیر معادلند:۱) overline{A_G} یک W ^*-G- جبر است.۳) I(A_G) یک W^* -G-جبر است.۳) G ،A -یکریخت با مجموع مستقیم شمارا از جبرهای با فرم K(H_n) است، که در آن H_n یک فضای هیلبرت می باشد. بعلاوه نشان خواهیم داد که این C ^*-G- جبر باید AF -G-جبر باشد. سرانجام نشان می دهیم که اگر که اگرC^* -G- جبر ساده اساسی جدایی پذیر پست لیمینال باشد، آنگاه لیمینال است.
Let G be a discrete group that acts on C^*-algebra A. We prove that in the category of G-AF-algebras and completely positive linear G-equivariant the finite-dimensional G-AF-algebra must be injective. One consequence of this is that no infinite-dimensional G-AF-algebra could be injective in the category of G-C^∗-algebras.Also, we show that the following statements are equivalent for a separable essentially simple G-C^*-algebra A: (i) A̅_G, regular completion of A, is a G-W^*-algebra (von-Neumann algebra).(ii) I_G(A), injective envelope of A, is a G-W*-algebra (von-Neumann algebra).(iii) A is G-isomorphic to a direct sum of elementary G-C^*-algebras K(H_n), which H_n is a Hilbert space. Since the K(H_n) is G-AF-algebra, and we know that the category of G-AF-algebras is closed under taking the countable direct sum. Therefore, we prove this G-C^*-algebra is a G-AF-algebra.Further, we show that if separable essentially simple G-C^∗-algebra A is post liminal, then A is liminal G-C^∗-algebra.
[1] P. Ara and M. Mathieu, Local Multipliers of C*-algebras, Springer Monographs in Mathematics, London. (2003).
[2] M. Argerami and D. R. Farenick, Local multipliers algebras, injective envelopes, and type I W*-a;gebras, J. Operator Theory. (2008), 237-245.
[3] M. Argerami and D. R. Farenick, Injective envelopes of separable C*-algebras. Philos. Trans. R. Soc. A 179 (2005), 43-63
[4] B. Blackadar, K-Theory for operator algebras. Mathematical Sciences Institute Publications, Cambridge University Press. (1998).
[5] M. Frank and V. I. Paulsen, Injective envelopes of C*-algebras as operator modules, Pacific J.Math.212(2003),57-69.
[6] A. M. Gleason, Projective topo;ogical spaces, Illinois J. Math. 2 (1956), 482-489.
[7] J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
[8] M. Hamana, Injective envelopes of C*-algebras, J. Math. Soc. Japen, 31 (1979), 181-197.
[9] M. Hamana, Injective envelope of C*-dynamical systems, Tohoku Mathematical Journal. 15 (1985), no. 3, 463-487.
[10] M. Hamana, Regular embeddings of C*-algebras in monotone complete $C^*$algebras, J. Math. Soc. Japan. 33 (1981), 159-183.
[11] M. Hamana, The center of regular monotone completion of a C*-algebra, J. London Math. Soc. 12 (1982),522-530.
[12] R. V. Kadison, Operator algebras with a faithful weakly- closed representation, Ann. of Math. 64 (1956), 175-181.
[13] H. O. Milhoj, AF-algebras and their invariants, Department of Mathemaical Sciences, University of Copenhagen, (2018).
[14] G. J. Murphy, C*-algebras and operator theory, Academic Press Limited, (1990).
[15] J. D. M. Wright, On von Neumann algebra whose pure states are separable, J. London Matt. Soc. 12 (1976), 385-388.
[16] J. D. M. Wright, Wild AW*-factors and Kaplansky-Rickart algebras, J. London. Math. Soc. 13 (1976), 83-89.