روش ε-محدودیت اصلاح شده برای مسائل بهینه سازی دوهدفه: کاهش پیچیدگی محاسباتی و افزایش کارایی
محورهای موضوعی : آمار
1 - استادیار، گروه ریاضی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد لاهیجان، لاهیجان، ایران.
کلید واژه: non-dominated points, &epsilon, -constraint method, Multiobjective optimization,
چکیده مقاله :
یکی از روش های مؤثر در حل مسائل بهینه سازی چندهدفه، روش ε-محدودیت می باشد که بر خلاف روش مجموع وزن دار شده قادر به یافتن نقاط غیرمغلوب در قسمت های نامحدب از مرز غیرمغلوب است. از معایب عمده این روش یافتن نقاط غیرمغلوب تکراری به ازای انتخاب پارامترهای متفاوت و در نتیجه افزایش پیچیدگی محاسباتی الگوریتم و کاهش کارایی آن در حالت کلی است که به لحاظ زمان و هزینه پیاده سازی مقرون به صرفه نیست. در این مقاله اصلاحی بر روش ε-محدودیت انجام می گیرد که به واسطه هوشمندسازی الگوریتم، نواحی غیرضروری که منجر به تولید نقاط غیرمغلوب تکراری می شوند، از همان ابتدا حذف می گردند و در نتیجه لزوم تلاش های محاسباتی اضافی جهت یافتن نقاط غیرمغلوب تکراری منتفی می شود. مباحث و جزییات روش پیشنهادی به همراه الگوریتم آن، ارائه شده و در بخش مثال های عددی، کارایی روش پیشنهادی در مقایسه با روش ε-محدودیت، مورد بررسی قرار می گیرد.
One of the effective method for solving the multi-objective optimization problems is the ε-constraint method which, unlike the weighted sum method is able to find non-dominated points in non-convex parts of the non-dominated frontier. The main disadvantages of this method are finding similar non-dominated points for choosing different parameters and thus increasing the computational complexity of the algorithm and reducing its overall performance, which is not cost-effective in terms of time and cost. In this paper, a modified is made to ε-constraint method, which, due to the intelligence of the algorithm, the unnecessary areas that lead to the production of the same non-dominated points are eliminated from the beginning. Therefore, additional computational efforts are eliminated to produce the same non-dominated points. Discussions and details of the proposed method, with its algorithm, are presented and in the numerical examples section, the efficiency of the proposed method is compared with the ε-constraint method.
[1] L. He, A. M. Friedman, C. Bailey‐Kellogg. A divide‐and‐conquer approach to determine the Pareto frontier for optimization of protein engineering experiments. Proteins. Structure, Function, and Bioinformatics 80(3): 790-806 (2012)
[2] A. Chakraborty, A. A. Linninger. Plant-wide waste management. 1. Synthesis and multiobjective design. Industrial & engineering chemistry research 41(18): 4591-4604 (2002)
[3] M. Asteasuain, A. Bandoni, C. Sarmoria, A. Brandolin. Simultaneous process and control system design for grade transition in styrene polymerization. Chemical engineering science, 61(10), 3362-3378 (2006)
[4] A. Hugo, C. Ciumei, A. Buxton, E. N. Pistikopoulos. E nvironmental impact minimisation through material substitution: a multi-objective optimisation approach. In Computer Aided Chemical Engineering 14, 683-688 (2003)
[5] Y. L. Lim, P. Floquet, X. Joulia, S. D. Kim. Multiobjective optimization in terms of economics and potential environment impact for process design and analysis in a chemical process simulator. Industrial & engineering chemistry research. 38(12): 4729-4741 (1999)
[6] I. Das, J. E. Dennis. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM journal on optimization. 8(3): 631-657 (1998)
[7] Y. Y. Haimes. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE transactions on systems, man, and cybernetics, 1(3): 296-297 (1971)
[8] B. Pirouz, E. Khorram. A computational approach based on the ε-constraint method in multi-objective optimization problems. Adv. Appl. Stat 49: 453 (2016)
[9] M. Ehrenstein, G. Guillén-Gosálbez. Multiobjective Life Cycle Optimization of Hydrogen Supply Chains. In Hydrogen Supply Chains 389-404 (2018)
[10] T. Ganesan, P. Vasant, I. Litvinchev. Multiobjective Optimization of a Biofuel Supply Chain Using Random Matrix Generators in Deep Learning Techniques and Optimization Strategies in Big Data Analytics. IGI Global 206-232 (2020)
[11] K. Sreenu, S. Malempati. MFGMTS: Epsilon constraint-based modified fractional grey wolf optimizer for multi-objective task scheduling in cloud computing. IETE Journal of Research 65(2): 201-215 (2019)
[12] M. A. Tawhid, V. Savsani. ∊-constraint heat transfer search (∊-HTS) algorithm for solving multi-objective engineering design problems. Journal of computational design and engineering 5(1): 104-119 (2018)
[13] A. Ghane-Kanafi, E. Khorram. A new scalarization method for finding the efficient frontier in non-convex multi-objective problems. Applied Mathematical Modelling 39(23): 7483-7498 (2015)
[14] J. Borwein, A. S. Lewis. Convex analysis and nonlinear optimization: theory and examples. Springer Science & Business Media (2010)
[15] M. Ehrgott. Multicriteria optimization. Springer Science & Business Media (2006)
[16] G. Eichfelder. Adaptive scalarization methods in multiobjective optimization (436): Springer (2008)
[17] A. Messac, A. Ismail-Yahaya, C. A. Mattson. The normalized normal constraint method for generating the Pareto frontier. Structural and multidisciplinary optimization 25(2): 86-98 (2003)
[18] T. Evangelos. Multi-criteria decision making methods: a comparative study. Netherland: Kluwer Academic Publication (2000)
[19] P.C. Fishburn. Letter to the editor—additive utilities with incomplete product sets: application to priorities and assignments. Operations Research 15(3): 537-542 (1967)
[20] V. Chankong, Y. Y. Haimes. Multiobjective decision making: theory and methodology. Courier Dover Publications (2008)
[21] S. A. Vavasis. Complexity issues in global optimization: a survey, in Handbook of global optimization Springer. 27-41 (1995)
[22] Z. B. Zabinsky. Random search algorithms. Wiley Encyclopedia of Operations Research and Management Science (2010)
[23] A. A. Zhigljavsky. Theory of global random search. Springer Science & Business Media (65): (2012)
[24] B. Betrò, F. Schoen. Sequential stopping rules for the multistart algorithm in global optimisation. Mathematical Programming 38(3): 271-286 (1987)
[25] K. Deb, L. Thiele, M. Laumanns, E. Zitzler. Scalable test problems for evolutionary multiobjective optimization. Evolutionary Multiobjective Optimization. Theoretical Advances and Applications. 105-145 (2005)