سولیتون های نوری و جواب های دیگر معادله کوندو-موکرجی-ناسکار دوبعدی
محورهای موضوعی : آمارکامیار حسینی 1 * , ماشااله متین فر 2 , محمد میرزازاده 3
1 - گروه ریاضی، دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران
2 - گروه ریاضی، دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران
3 - گروه علوم مهندسی، دانشگاه گیلان، شرق گیلان، واجارگاه، ایران
کلید واژه: (2+1)-dimensional Kundu-Mukherjee-Naskar equation, Traveling wave hypothesis, Exp_a and Jacobi elliptic function methods, Optical solitons and other solutions,
چکیده مقاله :
معادله کوندو-موکرجی-ناسکار دوبعدی توصیف کننده انتشار دینامیک سولیتون در سیستم های ارتباطی فیبر نوری در مقاله حاضر مطالعه می شود. هدف موردنظر با به کارگیری یک تبدیل موج حرکتی برای کاهش معادله کوندو-موکرجی-ناسکار دوبعدی به یک دامنه یک-بعدی و حل معادله دیفرانسیل معمولی غیرخطی حاصله با استفاده از روش های تابع نمایی و ضمنی ژاکوبی اجرایی می گردد. به عنوان یک موفقیت، سولیتون های نوری و جواب های دیگر معادله کوندو-موکرجی-ناسکار دوبعدی با تایید عملکرد فوق العاده روش های به کارگیری شده رسما استخراج می شوند.معادله کوندو-موکرجی-ناسکار دوبعدی توصیف کننده انتشار دینامیک سولیتون در سیستم های ارتباطی فیبر نوری در مقاله حاضر مطالعه می شود. هدف موردنظر با به کارگیری یک تبدیل موج حرکتی برای کاهش معادله کوندو-موکرجی-ناسکار دوبعدی به یک دامنه یک-بعدی و حل معادله دیفرانسیل معمولی غیرخطی حاصله با استفاده از روش های تابع نمایی و ضمنی ژاکوبی اجرایی می گردد. به عنوان یک موفقیت، سولیتون های نوری و جواب های دیگر معادله کوندو-موکرجی-ناسکار دوبعدی با تایید عملکرد فوق العاده روش های به کارگیری شده رسما استخراج می شوند.
The (2+1)-dimensional Kundu-Mukherjee-Naskar (2D-KMN) equation that addresses the propogation of soliton dynamics in optical fiber communication systems is investigated in the present paper. The intended purpose is accomplished by applying a traveling wave hypothesis for reducing the 2D-KMN equation in a 1-dimensional domain and solving the resulting ODE using the exp_a and Jacobi elliptic function methods. As an accomplishment, optical solitons and other solutions of the (2+1)-dimensional Kundu–Mukherjee–Naskar equation are extracted, confirming the outstanding performance of the methods.The (2+1)-dimensional Kundu-Mukherjee-Naskar (2D-KMN) equation that addresses the propogation of soliton dynamics in optical fiber communication systems is investigated in the present paper. The intended purpose is accomplished by applying a traveling wave hypothesis for reducing the 2D-KMN equation in a 1-dimensional domain and solving the resulting ODE using the exp_a and Jacobi elliptic function methods. As an accomplishment, optical solitons and other solutions of the (2+1)-dimensional Kundu–Mukherjee–Naskar equation are extracted, confirming the outstanding performance of the methods.
[1] A. Biswas, J. Vega-Guzman, A. Bansal, A.H. Kara, A.K. Alzahrani, Q. Zhou, M.R. Belic, Optical dromions, domain walls and conservation laws with Kundu–Mukherjee–Naskar equation via traveling waves and Lie symmetry, Results in Physics 16: 102850 (2020)
[2] N.A. Kudryashov, General solution of traveling wave reduction for the Kundu–Mukherjee–Naskar model, Optik 186: 22–27 (2019)
[3] M. Ekici, A. Sonmezoglu, A. Biswas, M.R. Belic, Optical solitons in (2+1)-Dimensions with Kundu–Mukherjee–Naskar equation by extended trial function scheme, Chinese Journal of Physics 57: 72–77 (2019)
[4] Y. Yıldırım, Optical solitons to Kundu–Mukherjee–Naskar model with trial equation approach, Optik 183: 1061–1065 (2019)
[5] Y. Yıldırım, Optical solitons to Kundu–Mukherjee–Naskar model with modified simple equation approach, Optik 184: 247–252 (2019)
[6] A.I. Aliyu, Y. Li, D. Baleanu, Single and combined optical solitons, and conservation laws in (2+1)-dimensions with Kundu–Mukherjee–Naskar equation, Chinese Journal of Physics 63: 410–418 (2020)
[7] Y. Yıldırım, M. Mirzazadeh, Optical pulses with Kundu–Mukherjee–Naskar model in fiber communication systems, Chinese Journal of Physics 64: 183–193 (2019)
[8] A. Biswas, A. Sonmezoglu, M. Ekici, A.S. Alshomrani, M.R. Belic, Highly dispersive singular optical solitons with Kerr law nonlinearity by Jacobi’s elliptic ds function expansion, Optik 192: 162954 (2019)
[9] A. Biswas, A. Sonmezoglu, M. Ekici, A.S. Alshomrani, Highly dispersive singular optical solitons having Kerr law nonlinearity by Jacobi’s elliptic cs function expansion, Optik 192: 162931 (2019)
[10] A. Das, A. Biswas, M. Ekici, Q. Zhou, A.S. Alshomrani, M.R. Belic, Optical solitons with complex Ginzburg–Landau equation for two nonlinear forms using -expansion, Chinese Journal of Physics 61: 255–261 (2019)
[11] A. Biswas, M. Ekici, A. Sonmezoglu, M.R. Belic, Highly dispersive optical solitons with quadratic-cubic law by exp-function, Optik 186: 431–435 (2019)
[12] A. Biswas, M. Ekici, A. Sonmezoglu, M.R. Belic, Optical solitons in birefringent fibers having anti-cubic nonlinearity with exp-function, Optik 186: 363–368 (2019)
[13] R.W. Kohl, A. Biswas, M. Ekici, Q. Zhou, S. Khan, A.S. Alshomrani, M.R. Belic, Highly dispersive optical soliton perturbation with Kerr law by semi-inverse variational principle, Optik 199: 163226 (2019)
[14] A. Biswas, S. Arshed, Application of semi-inverse variational principle to cubic-quartic optical solitons with kerr and power law nonlinearity, Optik 172: 847–850 (2018)
[15] A. Biswas, Y. Yıldırım, E. Yaşar, Q. Zhou, S.P. Moshokoa, M. Belic, Sub pico-second pulses in mono-mode optical fibers with Kaup–Newell equation by a couple of integration schemes, Optik 167:
121–128 (2018)
[16] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons and Fractals 30: 700–708 (2006)
[17] A.T. Ali, E.R. Hassan, General function method for nonlinear evolution equations, Applied Mathematics and Computation 217: 451–459 (2010)
[18] K. Hosseini, R. Ansari, F. Samadani, A. Zabihi, A. Shafaroody, M. Mirzazadeh, High-order dispersive cubic-quintic Schrödinger equation and its exact solutions, Acta Physica Polonica A 136: 203–207 (2019)
[19] K. Hosseini, A. Zabihi, F. Samadani, R. Ansari, New explicit exact solutions of the unstable nonlinear Schrӧdinger’s equation using the and hyperbolic function methods, Optical and Quantum Electronics 50: 82 (2018)
[20] K. Hosseini, M.S. Osman, M. Mirzazadeh, F. Rabiei, Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation, Optik 206: 164259 (2020)
[21] K. Hosseini, Z. Ayati, R. Ansari, New exact solution of the Tzitzéica type equations in nonlinear optics using the function method, Journal of Modern Optics 65: 847–851 (2018)
[22] K Hosseini, M Mirzazadeh, Q Zhou, Y Liu, M Moradi, Analytic study on chirped optical solitons in nonlinear metamaterials with higher order effects, Laser Physics 29: 095402 (2019)
[23] K. Hosseini, M. Mirzazadeh, M. Ilie, S. Radmehr, Dynamics of optical solitons in the perturbed Gerdjikov–Ivanov equation, Optik 206: 164350 (2020)
[24] H.C. Ma, Z.P. Zhang, A.P. Deng, A new periodic solution to Jacobi elliptic functions of MKdV equation and BBM equation, Acta Mathematicae Applicatae Sinica 28: 409–415 (2012)
[25] E.M.E. Zayed, R.M.A. Shohib, A. Biswas, Y. Yıldırım, F. Mallawi, M.R. Belic, Chirped and chirp-free solitons in optical fiber Bragg gratings with dispersive reflectivity having parabolic law nonlinearity by Jacobi’s elliptic function, Results in Physics 15: 102784 (2019)
[26] E.M.E. Zayed, M.E.M. Alngar, Optical solitons in birefringent fibers with Biswas–Arshed model by generalized Jacobi elliptic function expansion method, Optik 203: 163922 (2020)
[27] M.M.A. El-Sheikh, A.R. Seadawy, H.M. Ahmed, A.H. Arnous, W.B. Rabie, Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations, Physica A 537: 122662 (2020)