جواب های چندگانه برای مسایل مقدار مرزی مرتبه دوم با نماهای متغیر
محورهای موضوعی : آمارقاسم علیزاده افروزی 1 * , مصطفی نگراوی 2 , مهدی آژینی 3
1 - گروه ریاضی، دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران
2 - گروه ریاضی و آمار، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه ریاضی و آمار، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: Neumann conditions, Critical points theory, p(x)-Laplacian, Multiple solutions,
چکیده مقاله :
چکیدهدر این مقاله، فضاهای لبگ- سوبولف و قضیه های نقاط بحرانی را معرفی می کنیم سپس مساله مقدار مرزی که شامل یک معادله دیفرانسیل معمولی با عملگر p(x)- لاپلاسین و شرط نویمن غیرهمگن است را در نظر می گیریم. نتایج وجودی را برای معادلات دیفرانسیل معمولی به همراه مسائل بیضوی نویمن که به دو پارامتر حقیقی بستگی دارند بدست آورده ایم. با استفاده از نظریه نقطه بحرانی، به طور دقیق، وجود سه جواب را برای مسائل p(x)- لاپلاسین نشان می دهیم. با استفاده از قضیه های نقطه بحرانی که به اثبات رساندیم چند نتیجه را بیان می کنیم. در این مقاله، فضاهای لبگ- سوبولف و قضیه های نقاط بحرانی را معرفی می کنیم سپس مساله مقدار مرزی که شامل یک معادله دیفرانسیل معمولی با عملگر p(x)- لاپلاسین و شرط نویمن غیرهمگن است را در نظر می گیریم. نتایج وجودی را برای معادلات دیفرانسیل معمولی به همراه مسائل بیضوی نویمن که به دو پارامتر حقیقی بستگی دارند بدست آورده ایم. با استفاده از نظریه نقطه بحرانی، به طور دقیق، وجود سه جواب را برای مسائل p(x)- لاپلاسین نشان می دهیم. با استفاده از قضیه های نقطه بحرانی که به اثبات رساندیم چند نتیجه را بیان می کنیم.
In this paper, we introduce the Lebesgue -Sobolev spaces critical points theory then we consider the boundary value problem involving an ordinary differential equation with p(x)-Laplacian operator, and nonhomogeneous Neumann conditions. Existence results for ordinary differential equations with elliptic Neumann problems that depending on two real parameters are investigated. Precisely, by using the critical point theory, we show the existence of three weak solutions for p(x)-Laplacian problems. Using the critical point theorems we have proved, we give some conclusionsIn this paper, we introduce the Lebesgue -Sobolev spaces critical points theory then we consider the boundary value problem involving an ordinary differential equation with p(x)-Laplacian operator, and nonhomogeneous Neumann conditions. Existence results for ordinary differential equations with elliptic Neumann problems that depending on two real parameters are investigated. Precisely, by using the critical point theory, we show the existence of three weak solutions for p(x)-Laplacian problems. Using the critical point theorems we have proved, we give some conclusions