بررسی عددی یک طرح تفاضلی برای معادلات انتشار کسری زمانی- مکانی کپوتو- ریس چندجملهای
محورهای موضوعی : آنالیز عددیمجتبی فردی 1 , ابراهیم امینی 2 *
1 - گروه ریاضی کاربردی، دانشکده علوم ریاضی، دانشگاه شهرکرد، صنوق پستی 88186-34141، شهرکرد، ایران
2 - گروه ریاضی، دانشگاه پیام نور، صندوق پستی ۴۶٩٧- ١٩٣٩۵، تهران، ایران
کلید واژه: Fractional diffusion equations, Caputo-Riesz derivative, Convergence, stable Conditionally, Difference scheme,
چکیده مقاله :
چکیده: در این مقاله، یک طرح تفاضلی برای حل معادلات انتشار کسری زمانی- مکانی چند جملهای ارائه میشود. در معادلات انتشار کسری، مشتق زمانی از نوع کپوتو چند جملهای و مشتق مکانی از نوع ریس هستند. معادلات مذکور در بعدهای یک و دو در نظر گرفته شدهاند. در بعد یک مشتق مکانی ریس از مرتبهی و در بعد دو مشتق مکانی ریس از مرتبههای و هستند. همچنین، مشتق کپوتو چند جملهای از مرتبههای هستند. آنالیز پایداری و همگرایی طرح تفاضلی ارائه میشود و شرایط پایداری طرح تفاضلی ارائه شده را مورد بررسی قرار میدهیم. اثبات میکنیم که طرح تفاضلی پیشنهادی پایدار مشروط است. علاوهبراین نشان میدهیم که طرح تفاضلی با مرتبه در زمان و با مرتبهی دو در مکان همگراست. در پایان دو مثال عددی به ترتیب در بعدهای یک و دو داده میشود تا کارآیی و قابل اجرا بودن طرح تفاضلی پیشنهادی را از نظر دقت و سرعت همگرایی نشان دهیم.
.Abstract: In this paper, we provide a difference scheme for solving multi-term the time-space fractional diffusion equations. In fractional diffusion equations, the time derivative is of the Caputo type and the space derivative is of the Riesz type. The aformentional equations are considered for one and two dimensional. In one dimentional the Riesz space derivative is of the order and in two dimentional the Riesz space derivative is of the orders and . Also, the multi-term Caputo derivative is of orders . We provided the stability and convergence analysis of the proposed difference scheme and investigate the stability conditions of the proposed difference scheme. We prove that the proposed difference scheme is stable conditionally. Furthermore, we show that difference scheme is convergent with order in time and order 2 in space. Finally, we give two numerical examples for one and two dimensional to illustrate the efficiency and applicability of the proposed difference scheme in the sense of accuracy and convergence ratio.
[1] Metzler, R., and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339(1), 1–77.
[2] Zaslavsky, G. (2002). Chaos, fractional kinetics, and anomalous transport. Physics Reports, 371(6), 461–580.
[3] Metzler, R., and Klafter, J. (2004). The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, 37(31), R161–R208.
[4] Gloeckle, W. G., and Nonnenmacher, T. F. (1991). Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules, 24(24), 6426–6434.
[5] Schiessel, H., Metzler, R., Blumen, A., and Nonnenmacher, T. F. (1995). Generalized viscoelastic models: their fractional equations with solutions. Journal of Physics A: Mathematical and General, 28(23), 6567–6584.
[6] Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Lecture Notes in Mathematics, 2004) (2010th ed.). Springer.
[7] Hilfer, E. (2000). Applications of Fractional Calculus in Physics, World Scientific Publishing, New York, NY, USA.
[8] I. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, Calif, USA.
[9] Samko, S. G., Kilbas, A. A., and Marichev, O. I., (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Philadelphia, Pa, USA.
[10] Diethelm, K., Ford, N. J., and Freed, A. D. (2004). Detailed Error Analysis for a Fractional Adams Method. Numerical Algorithms, 36(1), 31–52.
[11] Zhuang, P., Liu, F., Anh, V., and Turner, I. (2008). New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation. SIAM Journal on Numerical Analysis, 46(2), 1079–1095.
[12] Tang, T. (1993). A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Applied Numerical Mathematics, 11(4), 309–319.
[13]. Chen, H., Xu, D., and Peng, Y. (2014). An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation. International Journal of Computer Mathematics, 92(10), 2178–2197.
[14]. Chen, H., Gan, S., and Xu, D. (2016). A fractional trapezoidal rule type difference scheme for fractional order integro–differential equation. J. Frac. Calcul. Appl., 7, 133–146.
[15] Elmahdi, E. G. M., & Huang, J. (2021). Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative. AIMS Mathematics, 6(6), 6356–6376.
[16] Arshad, S., Bu, W., Huang, J., Tang, Y., and Zhao, Y. (2017). Finite difference method for time–space linear and nonlinear fractional diffusion equations. International Journal of Computer Mathematics, 95(1), 202–217.
[17] Meerschaert, M. M., and Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of Computational and Applied Mathematics, 172(1), 65–77.
[18] Yang, Q., Liu, F., and Turner, I. (2010). Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Applied Mathematical Modelling, 34(1), 200–218.
[19] Sousa, E. (2012). A second order explicit finite difference method for the fractional advection diffusion equation. Computers & Mathematics with Applications, 64(10), 3141–3152.
[20] Tian, W., Zhou, H., and Deng, W. (2015). A class of second order difference approximations for solving space fractional diffusion equations. Mathematics of Computation, 84(294), 1703–1727.
[21] Ding, H., Li, C., and Chen, Y. (2014). High-Order Algorithms for Riesz Derivative and Their Applications(I). Abstract and Applied Analysis, 2014, 1–17.
[22] Lubich, C. (1986). Discretized Fractional Calculus. SIAM Journal on Mathematical Analysis, 17(3), 704–719.
[23] Ding, H., Li, C., and Chen, Y. (2015). High-order algorithms for Riesz derivative and their applications (II). Journal of Computational Physics, 293, 218–237.
[24] Ding, H., and Li, C. (2016). High-Order Algorithms for Riesz Derivative and their Applications (III). Fractional Calculus and Applied Analysis, 19(1), 19–55.
[25] Metzler, R., and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339(1), 1–77.
[26] Tang, Q. (2020). On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 25(2), 761–779.
[27] Povstenko, Y., Kyrylych, T., and Ryga, G., (2017). Fractional diffusion in a solid with mass absorption. Entropy, 19, 203.
[28] Liu, F., Anh, V. V., Turner, I., and Zhuang, P. (2003). Time fractional advection-dispersion equation. Journal of Applied Mathematics and Computing, 13(1–2), 233–245.
[29] Povstenko, Y., and Kyrylych, T., (2017). Two approaches to obtaining the space-time fractional advection–diffusion equation. Entropy, 19, 297.
[30] Huang, F., and Liu, F. (2005). The fundamental solution of the space-time fractional advection-dispersion equation. Journal of Applied Mathematics and Computing, 18(1–2), 339–350.
[31] Tripathi, N., Das, S., Ong, S., Jafari, H., and al Qurashi, M. (2016). Solution of Higher Order Nonlinear Time-Fractional Reaction Diffusion Equation. Entropy, 18(9), 329.
[32] Momani, S., and Odibat, Z. (2008). Numerical solutions of the space-time fractional advection-dispersion equation. Numerical Methods for Partial Differential Equations, 24(6), 1416–1429.
[33] Liu, Q., Liu, F., Turner, I., and Anh, V. (2007). Approximation of the Lévy–Feller advection–dispersion process by random walk and finite difference method. Journal of Computational Physics, 222(1), 57–70.
[34] Liu, F., Zhuang, P., Anh, V., Turner, I., and Burrage, K. (2007). Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation. Applied Mathematics and Computation, 191(1), 12–20.
[35] Ervin, V. J., and Roop, J. P. (2006). Variational formulation for the stationary fractional advection dispersion equation. Numerical Methods for Partial Differential Equations, 22(3), 558–576.
[36] Hejazi, H., Moroney, T., and Liu, F. (2014). Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. Journal of Computational and Applied Mathematics, 255, 684–697.
[37] Carella, A. R., and Dorao, C. A. (2013). Least-Squares Spectral Method for the solution of a fractional advection–dispersion equation. Journal of Computational Physics, 232(1), 33–45.
[38] Zheng, G., and Wei, T. (2010). Spectral regularization method for a Cauchy problem of the time fractional advection–dispersion equation. Journal of Computational and Applied Mathematics, 233(10), 2631–2640.
[39] Jiang, H., Liu, F., Turner, I., and Burrage, K. (2012). Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. Journal of Mathematical Analysis and Applications, 389, 1117-1127.
[40] Zhang, Y., Sun, Z., and Liao, H. (2014). Finite difference methods for the time fractional diffusion equation on non-uniform meshes. Journal of Computational Physics, 265, 195-210.
[41] Li, C., and Zeng, F. (2015). Numerical methods for fractional calculus, Boca Raton, FL: CRC Press, Taylor and Francis Group.
[42] Chen, M., and Deng, W. (2014). A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Applied Mathematical Modelling, 38(13), 3244–3259.