Cr2O3 nanoparticles: Synthesis, characterization, optical, magnetic properties and photocatalytic degradation of methyl orange
Subject Areas : Journal of NanoanalysisAliakbar Dehno Khalaji 1 , Pavel Machek 2 , Marketa Jarosova 3
1 - Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
2 - Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, Prague, Czech Republic
3 - Institute of Physic of the Czech Academy of Sciences, Na Slovance 2, Prague, Czech Republic
Keywords: Methyl Orange, Thermal decomposition, Photocatalytic Degradation, Cr2O3 nanoparticles, Pseudo-spherical,
Abstract :
Cr2O3 nanoparticles were synthesized via solid-state thermal decomposition of the mixture of Cr(NO3)3∙9H2O (as Cr precursor) and benzoic acid (as fuel) at 500 or 600 ºC for 3 h and characterized by FT IR and UV Vis spectroscopy, VSM, XRD and TEM. Also, characterized using zeta potential PZ measurement. FT IR and XRD results confirm high degree of crystallinity of Cr2O3 nanoparticles with ≈ 16-18 nm average crystallite size. The size distribution of the as prepared Cr2O3 nanoparticles is estimated to be in the range of 10-60 nm using TEM images. The morphology of the as prepared Cr2O3 nanoparticles is almost ellipsoidal or pseudo spherical. In addition, the photocatalytic degradation of methyl orange (MO) under UV light was studied. The effects of pH solution, sorbent dose and irradiation time were investigated. Based on changes in the UV-Vis spectra of MO, photocatalytic efficiencies were calculated about 91% and 89% for CeO2 nanoparticles prepared at 500 or 600 ºC, respectively.
[1] Z. Pei, Y. Zhang, Mater. Lett. 62 (2008) 504.
https://doi.org/10.1016/j.matlet.2007.05.073
[2] M.W. Abee, S.C. York, D.F. Cox, J. Phys. Chem. B 105 (2001) 7755.
https://doi.org/10.1021/jp011223u
[3] L. Li, Z.F. Yan, G.Q. Lu, Z.H. Zhu, J. Phys. Chem. B 110 (2006) 178.
https://doi.org/10.1021/jp053810b
[4] B.A. Kalantari, M.R. Talei Bavil Olyai, J. App. Chem. Res. 47 (2015) 47.
[5] R. Karimian, F. Piri, J. Nanostruct. 3 (2013) 87.
https://doi.org/10.1186/2193-8865-3-52
[6] J.L. Bobet, S. Desmoulins-Krawiec, E. Grigorova, F. Cansell, B. Chevalier, J. All. Compd. 351 (2003) 217.
https://doi.org/10.1016/S0925-8388(02)01030-7
[7] J.H. Uhm, M.Y. Shin, Z.D. Jiang, J.S. Chung, Appl. Catal. B 22 (1999) 293.
https://doi.org/10.1016/S0926-3373(99)00057-0
[8] H. Zhang, J.G. Li, H.B. Zhang, X.S. Liang, C.G. Yin, Q. Diao, J. Zhrng, G.Y. Lu, Sensor Actuat. B. Chem. 180 (2013) 66.
https://doi.org/10.1016/j.snb.2012.03.024
[9] S, Khamlich, O. Nemraoui, N. Mongwaketsi, R. McCrindle, N. Cingo, M. Maaza, Physica B 407 (2012) 1509.
https://doi.org/10.1016/j.physb.2011.09.073
[10] P.M.T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo, G. Baldi, Dyes Pig. 80 (2009) 226.
https://doi.org/10.1016/j.dyepig.2008.07.004
[11] X. He, D. Antonelli, Angew. Chem. Int. Ed. 114 (2002) 222.
https://doi.org/10.1002/1521-3757(20020118)114:2<222::AID-ANGE222>3.0.CO;2-5
[12] X. He, D. Antonelli, Angew. Chem. Int. Ed. Engl. 41 (2002) 214.
https://doi.org/10.1002/1521-3773(20020118)41:2<214::AID-ANIE214>3.0.CO;2-D
[13] V. Balouria, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Solid State Phys. AIP Conf. Proc. 1447 (2012) 341.
[14] F. Farzaneh, M. Najafi, J. Sci. IRI. 22 (2011) 329.
[15] Z. Pei, X. Zhang, Mater. Lett. 93 (2013) 377.
https://doi.org/10.1016/j.matlet.2012.11.127
[16] Z. Pei, J. Pei, H. Chen, L. Gao, S. Zhou, Mater. Lett. 159 (2015) 357.
https://doi.org/10.1016/j.matlet.2015.07.012
[17] R.F.K. Gunnewiek, C.F. Mendes, R.H.G.A. Kiminami, Mater. Lett. 129 (2014) 54.
https://doi.org/10.1016/j.matlet.2014.05.026
[18] H. Sun, L. Wang, D. Chu, Z. Ma, A. Wang, Mater. Lett. 140 (2015) 35.
[19] H.L. Zhang, S.T. Liang, M.T. Luo, M.G. Ma, P.P. Fan, H.B. Xu, P. Li, Y. Zhang, Mater. Lett. 117 (2014) 244.
https://doi.org/10.1016/j.matlet.2013.12.010
[20] N.D. Hebbar, K.S. Choudhari, S.A. Shivashankar, C. Santhosh, S.D. Kulkarni, J. Alloys Compd. 785 (2019) 747.
https://doi.org/10.1016/j.jallcom.2019.01.254
[21] A. Shokri, Int. J. Environ. Anal. Chem. doi.10.1080/03067319.2020.1791328
[22] A. Shokri. Russ. J. Phys. Chem. A 93 (2019) 243.
https://doi.org/10.1134/S003602441902002X
[23] A. Shokri, Int. J. Environ. Anal. Chem. doi.10.1080/03067319.2020.1784887
[24] M. Rostami, H. Mazaheri, A. Hassani Joshaghani, A. Shokri, Int. J. Eng. B 32 (2019) 1074.
[25] A. Shokri, Surf. Interfaces. 21 (2020) 100705.
https://doi.org/10.1016/j.surfin.2020.100705
[26] A.D. Khalaji, P. Machek, M. Jarosova, Adv. J. Chem. A 4 (2021) 317.
[27] A. Foroughnia, A.D. Khalaji, E. Kolvari, N. Koukabi, Int. J. Biol. Macromol. 177 (2021) 83.
https://doi.org/10.1016/j.ijbiomac.2021.02.068
[28] Z. Bashandeh, A.D. Khalaji, Asian J. Nanosci. Mater. 4 (2021) 274.
[29] M. Sanati, A.D. Khalaji, A. Mokhtari, M. Keyvanfard, Prog. Chem. Biochem. Res. 4 (2021) 319.
[30] Z. Bashandeh, A.D. Khalaji, Adv. J. Chem. A 4 (2021) 270.
[31] S. Steplin Paul Selvin, A. Ganesh Kumar, L. Sarala, R. Rajaram, A. Sathiyan, J. Princy Merlin, I. Sharmila Lydia, ACS Sustainable Chem. Eng. 6 (2018) 258.
https://doi.org/10.1021/acssuschemeng.7b02335
[32] M.A. Iqbal, S.I. Ali, F. Amin, A. Tariq, M.Z. Iqbal, S. Rizwan, ACS Omega 4 (2019) 8661.
https://doi.org/10.1021/acsomega.9b00493
[33] A.G. Naikwade, M.B. Jagadale, D.P. Kale, A.D. Gophane, K.M. Garadkar, G.S. Rashinkar, ACS Omega 5 (2020) 131.
https://doi.org/10.1021/acsomega.9b02040
[34] R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem. A 3 (2015) 6565.
[35] R. Shan, L. Lu, J. Gu, Y. Zhang, H. Yuan, Y. Chen, B. Luo, Mater. Sci. Semiconduc. Process. 114 (2020) 105088.
https://doi.org/10.1016/j.mssp.2020.105088
[36] Y. Bian, G. Zhang, W. Ding, L. Hu, Z. Sheng, RSC Adv. 11 (2021) 6284.
[37] A. Hassan, A. Osman said, B. Heakal, A. Younis, M. Abdelmoaz, M. Abdrabou, Adv. J. Chem. A. 3 (2020) 621.
[38] K. Anandan, V. Rajendran, Mater. Sci. Semiconduc. Process. 19 (2014) 136.
https://doi.org/10.1016/j.mssp.2013.12.004
[39] M. Salehi, F. Ghasemi, J. App. Chem. 9 (2015) 97.
[40] B.T. Sone, E. Manikandan, A. Gurib-Fakim, M. Maaza, Gren Chem. Lett. Rev. 9 (2016) 85.
https://doi.org/10.1080/17518253.2016.1151083
[41] M. Roy, S. Ghosh, M.K. Naskar, Mater. Chem. Phys. 159 (2015) 101.
https://doi.org/10.1016/j.matchemphys.2015.03.058
[42] V. Petricek, M. Dusek, L. Palatinus L. Z. Kristallogr. 229 (2014) 345.
https://doi.org/10.1515/zkri-2014-1737
[43] R.W. Cheary, A.A. Coelho, J. Appl. Cryst. 31 (1998) 862.
https://doi.org/10.1107/S0021889898006876
https://doi.org/10.1107/S0021889898006888
[44] D.W. Kim, S.I. Shin, J.D. Lee, S.G. Oh, Matter. Lett. 58 (2004) 1894.
https://doi.org/10.1016/j.matlet.2003.11.023
[45] A. Sobhani, M.S. Niasari, Superlattices Microstruct. 59 (2013) 1.
https://doi.org/10.1016/j.spmi.2013.03.018
[46] M. Lu, Y. Cui, Z. Zhao, A. Fakhri, J. Photochem. Photobiol. B: Biol. 205 (2020) 111842.
https://doi.org/10.1016/j.jphotobiol.2020.111842
[47] X. Lin, X. Wang, Q. Zhou, C. Wen, S. Su, J. Xiang, P. Cheng, X. Hu, Y. Li, X. Wang, X. Gao, R. Nozel, G. Zhou, Z. Zhang, J. Liu, ACS Sustainable Chem. Eng. 7 (2018) 1673.
https://doi.org/10.1021/acssuschemeng.8b05440
[48] S.K. Li, F.Z. Huang, Y. Wang, Y.H. Shen, L.G. Qiu, A.J. Xie, S.J. Xu, J. Mater. Chem. 21 (2011) 7459.
https://doi.org/10.1039/c0jm04569a
[49] N.I.M. Razip, K.M. Lee, C.W. Lai, B.H. Ong, Mater. Res. Express (2019) DOI:10.1088/2053-1591/AB176E
https://doi.org/10.1088/2053-1591/ab176e