A Deep Survey upon the Synthesis of AuS Nanostructures
Subject Areas : Smart & Advanced MaterialsKourosh Motevalli 1 , Zahra Yaghoubi 2
1 - Applied Chemistry Department, South Tehran Branch,Islamic Azad University, Tehran, Iran
2 - IT Department, South Tehran Branch,Islamic Azad University, Tehran, Iran
Keywords: synthesis, nanostructure, hydrothermal, semiconductor,
Abstract :
In this research, the dendritic gold(I) sulfide nanostructures were successfully synthesized by a simple hydrothermal route. The effect of temperature , and reaction time, on the morphology and particle dimension was alsoinvestigated. Thus, the efficiency of synthesized gold sulfide nanostructures in thin-film solar cells was evaluated. The results indicated very well that the particle dimension and morphology have effect on solar cells efficiency and dendritic gold sulfide nano-structures have higher efficiency compared to sphericaland rod-like gold sulfide nanostructures. Moreover, depositing of dendritic gold sulfide upon gold sulfide nanoparticles led to obtaining 3.28% cell efficiency that in comparison with sole dendritic nanostructures and sole nanoparticles (1.89%), efficiency improvements of 48 and 85% were, respectively,obtained and also this important point must be elucidated that this nanostructures are useful for mechanical usages especially in manufacturing some linked rings in water treatment installations. Also, if we want to be decided for comparing with similar works presented for gold sulfide preparation [1–10],then, this fact will be illuminated easily that we synthesized dendritic gold sulfide nano-structures using new initiating reagents and without using surfactants by an easy route which can be more able in solar cells.
1. H. Salaramoli, E. Maleki, Z. Shariatini, M. Ranjbar, J. Photo-chem. Photobio. A: Chem. 271, 56
(2013)
2. M. Peng, L.L. Ma, Y.G. Zhang, M. Tan, Y. J.B. W. Yu, Mater.Res. Bull. 44, 1834 (2009)
3. Z. Li, W. Chen, H. Wang, Q. Ding, H. Hou, J. Zhang, L. Mi, Z.Zheng, Mater. Lett. 65, 1785 (2011)
4. H. Lee, S.W. Yoon, E.J. Kim, J. Park, Nano. Lett. 7, 778 (2007)
5. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakay-ama, M. Aono, Appl. Phys. Lett.
82, 3032 (2003)
6. N.S. Xu, S.E. Huq, Mater. Sci. Eng. R 48, 47 (2005)
7. X. Liu, X.L. Wang, B. Zhou, W.C. Law, A.N. Cartwright, M.T.Swihart, Adv. Funct. Mater. 23,
1256 (2013)
8. L. Chen, Y. Zou, W. Qiu, F. Chen, M. Xu, M. Shi, H. Chen, (ThinSolid Films) 520, 5249 (2012)
9. Z.P. Liu, D. Xu, J.B. Liang, J.M. Shen, S.Y. Zhang, Y.T. Qian, J.Phys. Chem. B 109, 10699 (2005)
10. M.B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee,B.A. Korgel, J. Am. Chem. Soc.
125, 16050 (2003)
11. Mehdi Mousavi Kamazani , Seyed Amin Shobeir , Reza Rahmatolahzadeh , kourosh motevalli ,
Appl.phys.A(2017)123.314
12. Y.B. Chen, L. Chen, L.M. Wu, Chem. Eur. J 14, 11069 (2008)
13. 13, X. Li, H. Shen, J. Niu, S. Li, Y. Zhang, H. Wang, L.S. Li, J. Am. Chem. Soc. 132, 12778
(2010)
14. Y. Xiao, J. Chen, S.Z. Deng, N.S. Xu, S. Yang, J. Nanosci. Nano-technol. 8, 237 (2008)
15. Z. Wu, C. Pan, Z. Yao, Q. Zhao, Y. Xie, Cryst. Growth Des. 6,1717 (2006)
16. Q. Han, K. Xu, Mater. Lett. 85, 4 (2012)
17. Y.F. Zhu, D.H. Fan, W.Z. Shen, Langmuir 24, 11131 (2008)
18. M. Mousavi-Kamazani, M. Salavati-Niasari, M. Sadeghinia, Superlattic. Microst. 63, 248 (2013)
19. S. Gorai, D. Ganguli, S. Chaudhuri, 59, 826 (2005)
20. O. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbari, Mater. Sci. Semicond. Process. 16, 1485
(2013)
21. M. Sabet, M. Salavati-Niasari, D. Ghanbari, O. Amiri, M. Yousefi, Mater. Sci. Semicond. Process.
16, 696 (2013(