Investigating the Effects of Boron and Zirconium on the High-Temperature Fatigue Behavior of Nimonic 105 Super Alloy
Subject Areas : SuperalloysZahra Asghary 1 , Masumeh Seifollahi 2 , Maryam Morakabati 3 , Seyed Mahdi Abbasi 4
1 - Phd Researcher, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran.
2 - Assistant Professor, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran
3 - Associate professor, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran.
4 - Professor, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran.
Keywords: Boron, Zirconium, Fracture surface, Nimonic 105 Super alloy, High-temperature low-cycle fatigue,
Abstract :
This study investigates the low-cycle fatigue of Nimonic105 alloy with boron and zirconium of 0.003-0.013 wt.% and 0.0-0.16 wt.%, respectively at 750 °C. The fatigue test results indicated that the alloy with boron of 0.013 wt.% had the highest fatigue life of 400 cycles, while the base alloy showed the lowest fatigue life of 21 cycles at 2% strain amplitudes. For the alloy with 0.16 wt.% Zr, and the alloy with 0.08 wt.% Zr and 0.006 wt.% B, cyclic-hardening occurred at a constant slope. Then, hardening followed a nonlinear procedure at a reducing rate. Finally, softening and fracture happened. For 0.013 wt.% Zr alloy, however, the diagram reached a stable state or slow cyclic-softening and failed after a relatively short period of cyclic -softening. The Coffin-Manson equations’ parameters verified the increased flexibility due to the addition of B. to be a factor in improving high-temperature LCF strength. The investigation of the samples’ fracture surfaces indicated that the intergranular fracture of the base alloy with the lowest fatigue life became intergranular and transgranular fracture in the alloy with 0.16 wt.% Zr content and the alloy with 0.08 wt.% Zr content and 0.006 wt.% B contents. Also, 0.013 wt.% B alloy with the highest fatigue life showed a completely transgranular fracture.
[1] M. Pollock Tresa, Sammy T. "Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties." J. propulsion power, Vol. 22, 2006, pp. 361-374.
[2] V. Seetharaman, K. Bhanu Sankara Rao, D. Sundararaman, P. Rodriguez. "Precipitation and tensile deformation behaviour of a nimonic 105 superalloy." Acta Metall., Vol. 35, 1987, pp. 565-575.
[3] N. Srinivasa, Y. V. Prasad. "Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps." J. Mat. Pro. Tech., Vol. 51, 1995, pp. 171-192.
[4] Y. Xu, C. Yang, X. Xiao, X. Cao, G. Jia, Z. Shen. "Strengthening behavior of Al and Ti elements at room temperature and high temperature in modified Nimonic 80A." Mat. Chem. Phys., Vol. 134, 2012, pp. 706-715.
[5] H. S. Jeong, J. R. Cho, H. C. Park. "Microstructure prediction of Nimonic 80A for large exhaust valve during hot closed die forging." Vol. 162, 2005, pp. 504-511.
[6] J. Dahal, K. Maciejewski, H. Ghonem. "Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy." Int. J. Fat., Vol. 57, 2013, pp. 93-102.
[7] K. Obrtlík, M. Petrenec, J. Man, J. Polák, K. Hrbáček. "Isothermal fatigue behavior of cast superalloy Inconel 792-5A at 23 and 900 C." J. Mat. Sci., Vol.44, 2009, pp. 3305-3314.
[8] A. Bradley, N. Jayaraman, S. D. Antolovich. "A study of fatigue damage mechanisms in Waspaloy from 25 to 800 C." Mat. Sci. Eng., Vol. 66, 1984, pp. 151-166.
[9] S. A. Hosseini, S. M. Abbasi, K. Zangeneh Madar. "The Effect of Boron and Zirconium on the Structure and Tensile Properties of the Cast Nickel-Based Superalloy ATI 718Plus." Journal of Mat. Eng. Perform., Vol. 27, 2018, pp. 2815-2826.
[10] H. R. Jhansale, "A new parameter for the hysteretic stress-strain behavior of metals." J. Engineering Mate. Tech., Vol. 97, 1975, pp. 33-38.
[11] D. S. Antolovich, S. Liu, R. Baur. "Low cycle fatigue behavior of René 80 at elevated temperature." Metall. Trans. A, Vol. 12, 1981, pp. 473-481.
[12] S. K. Hwang, H. N. Lee, B. H. Yoon. "Mechanism of cyclic softening and fracture of a Ni-Base γ′-Strengthened alloy under low-Cycle fatigue." Metall. Trans. A, Vol. 20, 1989, pp. 2793-2801.
[13] G. R. Romanoski, S. D. Antolovich, R. M. Pelloux. "A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue." In Low Cycle Fatigue. ASTM International, 1988.
[14] K. S. Prasad, P. Ghosal, V. Kumar. "Simultaneous creep–fatigue damage accumulation of forged turbine disc of IN 718 superalloy." Mater. Sci. Eng., pp. A, Vol. 572, 2013, pp. 1-7.
[15] S. D. Antolovich, E. Rosa, A. Pineau. "Low cycle fatigue of René 77 at elevated temperatures." Mat. Sci. Eng., Vol. 47, 1981, pp. 47-57.
[16] G. John, T. P. Gabb, R. V. Miner. "Fatigue crack propagation of nickel-base superalloys at 650 C." In Low Cycle Fatigue. ASTM International, 1988.
[17] L. Xiao, D. L. Chen, M. C. Chaturvedi. "Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 C." Mat. Sci. Eng. A, Vol. 428, 2006, pp. 1-11.
[18] L. Xiao, M. C. Chaturvedi, D. L. Chen. "Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 C." Metall. Mater. Trans. A, Vol. 35, 2004, pp. 3477-3487.
[19] L. Xiao, M. C. Chaturvedi, D. L. Chen. "Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 C." Metall. Mater. Trans. A, Vol. 35, 2004, pp. 3477-3487.
[20] L. Xiao, M. C. Chaturvedi, D. L. Chen. "Low-cycle fatigue behavior of INCONEL 718 superalloy with different concentrations of boron at room temperature." Metall. Mater. Trans. A, Vol. 36, 2005, pp. 2671-2684.
[21] W.J. Pennington, "Improvement in High-Temperature Alloys by Boron and Zirconium." Metal Progr. Vol. 73, 1958.
[22] H. Huang, C. Koo. "Effect of zirconium on microstructure and mechanical properties of cast fine-grain CM 247 LC superalloy." Metall. Mater. Trans. A, Vol. 45, 2004, pp. 554-561.
[23] B. C. Yan, J. Zhang, L. H. Lou. "Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy." Mat. Sci. Eng. A, Vol. 474, 2008, pp. 39-47.
[24] Y. Tsai, S. Wang, H. Bor, Y. Hsu. "Effects of Zr addition on the microstructure and mechanical behavior of a fine-grained nickel-based superalloy at elevated temperatures." Mat. Sci. Eng. A, Vol. 607, 2014, pp. 294-301.
[25] K. C. Antony, J. F. Radavich. "Solute effects of boron and zirconium on microporosity." In Proceedings of The Third International Symposium, Claitor Publishing. 1976.
[26] Z. Asqary, S.M. Abbasi, M. Seifollahi, M. Morakabati, "The effect of boron and zirconium on the microstructure and tensile properties of Nimonic 105 superalloy ", Mater. Res. Express, Vol. 6, 2019, pp. 1-11.
[27] M. Stucke, T. Nicholas, M. Khobaib, B. Majumdar. "Environmental aspects in creep crack growth in a nickel base superalloy." In Fracture 84, Pergamon, 1984, pp. 3967-3975.
[28] L. Wang, S. Wang, X. Song, Y. Liu, G. Xu. "Effects of precipitated phases on the crack propagation behaviour of a Ni-based superalloy." Int. J. Fatigue, Vol. 62, 2014, pp. 210-216.
[29] S.K. Hwang, H.N. Lee, B.H. Yoon. "Mechanism of cyclic softening and fracture of an Ni-Base γ′-Strengthened alloy under low-Cycle fatigue." Metall. Trans. A, Vol. 20, 1989, pp. 2793-2801.
[30] G. A. Osinkolu, G. Onofrio, M. Marchionni. "Fatigue crack growth in polycrystalline IN 718 superalloy." Mat. Sci. Eng. A, Vol. 356, 2003, pp. 425-433.
[31] H. A. Roth, C. L. Davis, R. C. Thomson. "Modeling solid solution strengthening in nickel alloys." Metall. Mater. Trans. A, Vol. 28, 1997, pp. 1329-1335.
[32] D. Krueger, S. D. Antolovich, H. R. Van Stone. "Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 C." Metall. Trans.s A, Vol. 18, 1987, pp. 1431-1449.
[33] T. Fedorova, J. Rösler, B. Gehrmann, J. Klöwer. "Influence of B and Zr on microstructure and mechanical properties of alloy 718." In International Symposium Superalloy 718 Derivatives, 2010, pp. 836-846.
[34] H. Ghonem, D. Zheng. "Depth of intergranular oxygen diffusion during environment-dependent fatigue crack growth in alloy 718." Mat. Sci. Eng. A, Vol. 1501992, pp. 151-160.