مقایسه پیش بینی هزینه ها با استفاده از روش های آماری و شبکه عصبی مطالعه موردی: شهرداری اصفهان
محورهای موضوعی : حسابداری مدیریتامیر محمدزاده 1 , نسرین مهدی پور 2 , آرش محمدزاده 3
1 - مسئول مکاتبات
2 - ندارد
3 - ندارد
کلید واژه: شهرداری اصفهان, مدل رگرسیون, شبکه عصبی مصنوعی, پیش بینی هزینه های آب,
چکیده مقاله :
پیش بینی هزینه کل آب در شهرداری اصفهان کمک موثری میباشد برای بهینه سازی مصرف آب در 14 منطقهشهرداری اصفهان. هزینه کل آب تابعی از پارامترهای مختلف و متنوع می باشد. به همین دلیل پیش بینی هزینه بهصورت تحلیلی بسیار مشکل و یا ناممکن می باشد. در این شرایط استفاده از سیستم های هوشمند می تواند بهعنوان یک گزینه راهگشا مطرح گردد. در این تحقیق با استفاده از شبک ه های عصبی پرسپترون چند لایه و باالگوریتم آموزشی پس انتشار خطا هزینه کل آب شهرداری اصفهان بر اساس پارامترهای سرانه جمعیت هر منطقه،سرانه مساحت هر منطقه به دست آمده است.بدین منظور در این تحقیق مدلی برنامه ریزی شده که قابلیت ها وچهارچوب آن برای پیش بینی هزینه آب در 14 منطقه شهرداری اصفهان میباشد. این برنامه شامل شبیه سازی و پیشبینی هزینه کل آب سالانه شهرداری اصفهان می باشد. شبیه سازی هزینه کل آب با روش های رگرسیون و ش بکهعصبی مصنوعی با استفاده از داده های سال 83 تا 88 انجام شده است که در نهایت روش شبکه عصبی مصنوعیبه عنوان مدل شبیه سازی تعیین شده است
Prediction of total cost of water helps the Isfahan municipality to optimize thewater usage in its 14 urban zone. The total cost of water, basically, depends ondifferent parameters. Generally, the analytically prediction of the total cost is verydifficult if not impossible. Thus, applying intelligent systems such as neural networkmodels can be a good alternative. In this paper, using multi-layer perceptron neuralnetwork and error back propagation algorithm, the total cost of municipal water in theIsfahan municipality is calculated based on parameters such as per capita populationand area of each urban zone. In this paper, a model for simulation and prediction ofthe annual total cost of water in Isfahan municipality is developed. The simulationmodel is developed using the regression and the neural network model is built usingdata from 2004 to 2009. Finally, the neural network method is selected as the mainsimulation method for forecasting the total cost of water in the 14 urban zones ofIsfahan.