شناسایی تشنج صرعی بر پایهی آمارگان نقشه تبدیل موجک و روش EMD برای آنالیز طیفی هیلبرت - هوانگ در باند فرکانسی گاما سیگنالهایEEG
محورهای موضوعی : پردازش سیگنالهای پزشکیمرتضی به نام 1 , حسین پورقاسم 2 *
1 - دانشگاه آزاد اسلامی واحد نجف آباد
2 - دانشگاه آزاد اسلامی واحد نجف آباد
کلید واژه: تبدیل موجک, بیماری صرع, تبدیل هیلبرت – هوانگ, ریتمهای مغزی, طبقهبند K- نزدیکترین همسایه (KNN),
چکیده مقاله :
تشخیص بیماری تشنج با استفاده از آنالیز سیگنالهای مغزی (EEG) از جمله روشهای کلینیکی کارآمد در درمان دارویی و تصمیمات پیش از جراحی مغزی میباشد. در این مقاله، پس از آمادهسازی سیگنالها با استفاده از یک فیلترینگ مناسب، باند فرکانسی گاما استخراج شده است و سایر ریتمهای مغزی، مقادیر نویز محیطی و سیگنالهای حیاتی دیگر حذف میشوند. سپس، تبدیل موجک سیگنالهای مغزی و نقشه موزائیکی تبدیل موجک در چند سطح محاسبه میشود. با تقسیم مناسب نقشهی رنگی به بخشبندیهای مختلف، هیستوگرام هر زیر- تصویر محاسبه شده و آمارگان آن بر پایهی مقدار ممانهای آماری و آنتروپی منفی محاسبه میشود. بردار ویژگی آماری با استفاده از تحلیل مولفههای اصلی (PCA) به یک بعد کاهش مییابد. با استفاده از الگوریتم EMD و پروسه غربالگری در تحلیل دادهها به وسیلهی توابع حالت ذاتی (IMF) و مقدار ماندهی سیگنالها و با استفاده از طیف تبدیل هیلبرت و تشکیل طیف هیلبرت – هوانگ یک ویژگی مکانی بر پایهی فاصله اقلیدسی برای طبقهبندی سیگنالهای مغزی محاسبه میشود. بوسیلهی طبقهبند K- نزدیکترین همسایه (KNN) و با در نظر گرفتن پارامتر همسایگی بهینه، سیگنالهای مغزی به دو کلاس دارای تشنج و سیگنالهای سالم با میزان صحت 54/76% و واریانس خطای 3685/0 در آزمایشهای مختلف طبقهبندی میشوند.
Seizure detection using brain signal (EEG) analysis is the important clinical methods in drug therapy and the decisions before brain surgery. In this paper, after signal conditioning using suitable filtering, the Gamma frequency band has been extracted and the other brain rhythms, ambient noises and the other bio-signal are canceled. Then, the wavelet transform of brain signal and the map of wavelet transform in multi levels are computed. By dividing the color map to different epochs, the histogram of each sub-image is obtained and the statistics of it based on statistical momentums and Negentropy values are calculated. Statistical feature vector using Principle Component Analysis (PCA) is reduced to one dimension. By EMD algorithm and sifting procedure for analyzing the data by Intrinsic Mode Function (IMF) and computing the residues of brain signal using spectrum of Hilbert transform and Hilbert – Huang spectrum forming, one spatial feature based on the Euclidian distance for signal classification is obtained. By K-Nearest Neighbor (KNN) classifier and by considering the optimal neighbor parameter, EEG signals are classified in two classes, seizure and non-seizure signal, with the rate of accuracy 76.54% and with variance of error 0.3685 in the different tests.
[1] S. Nasehi, H. Pourghassem, “Seizure detection algorithms based on analysis of EEG and ECG signals: A survey”, Neurophysiology, Vol. 44, No. 2, pp. 174-186, June 2012.
[2] S. Nasehi, H. Pourghassem, “Epileptic seizure onset detection algorithm using dynamic cascade feed-forward neural networks”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp.196-199, Dec. 2011.
[3] M. Behnam, H. Pourghassem, “Epilepsy detection based on optimization of fused Hartley transform feature with hybrid model of MLP and GA using Memetic learning strategy”, Tabriz Journal of Electrical Engineering, Vol. 45, No. 4, Winter 2015.
[4] S. Nasehi, H. Pourghassem, “Real-time seizure detection based on EEG and ECG fused features using Gabor functions”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp. 204-207, Dec. 2011.
[5] S. Nasehi, H. Pourghassem, “A novel fast epileptic seizure onset detection algorithm using general tensor discriminant analysis”, Journal of Clinical Neurophysiology, Vol. 30, No. 4, pp. 362-370, Aug. 2013.
[6] S. Nasehi, H. Pourghassem, “A new feature dimensionally reduction approach based on general tensor discriminant analysis in EEG signal classification”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp. 188-191, Dec. 2011.
[7] A. Aarabi, R. Grebe, F. Wallois, “A multistage knowledge-based system for EEG seizure detection in newborn infants”, Clinical Neurophysiology, Vol. 118, No. 12, pp. 2781-2797, Dec. 2007.
[8] S. Nasehi, H. Pourghassem, “Automatic prediction of epileptic seizure using kernel fisher discriminant classifiers”, International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), China, pp. 200-203, Dec. 2011.
[9] E. Ubeyli, I. Guler, “Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks”, Engineering Applications of Artificial Intelligence, Vol. 17, No. 6, pp. 567-576, Sep. 2004.
[10] N. Kannathal, M. Choo, U. Acharya, P. Sadasivan, “Entropies for detection of epilepsy in EEG”, Computer Methods and Programs in Biomedicine, Vol. 80, No. 3, pp. 187-194, Dec. 2005.
[11] Y. Lee, G.M. Yeon, Y.M. Kim, S.O. Nam, “Relationship between initial electroencephalographic characteristics and seizure outcomes in children with non-lesional West syndrome”, Epilepsy Research, Vol. 110, pp. 49-54, Feb. 2015.
[12] J. Gotman, “Automatic seizure detection: improvements and evaluation”, Electroencephalography and Clinical Neurophysiology, Vol. 76, No. 4, pp. 317-324, Oct. 1990.
[13] S.B. Wilson, M.L. Scheuer, C. Plummer, B. Young ,S. Pacia, “Seizure detection: correlation of human experts”, Clinical Neurophysiology, Vol. 114, No. 11, pp. 2156-2164, Nov. 2003.
[14] S.B. Wilson, M.L. Scheuer, R.G. Emerson, A.J. Gabor, “Seizure detection: evaluation of the Reveal algorithm,” Clinical Neurophysiology, Vol. 115, No. 10, pp. 2280-2291, Oct. 2004.
[15] S. Nasehi, H. Pourghassem, “Patient-specific epileptic seizure onset detection algorithm based on spectral features and IPSONN classifier”, International Conference on Communication Systems and Network Technologies (CSNT), pp. 186-190, April 2013.
[16] EEG Database, http://www.physionet.org/pn6/chbmit.
[17] M. Behnam, H. Pourghassem, “Periodogram pattern feature-based seizure detection algorithm using optimized hybrid model of MLP and Ant colony”, Iranian Conference on Electrical Engineering (ICEE 2015), Tehran, Iran, pp. 32-37, May 2015.
[18] O. Faust, U.R. Acharya, H. Adeli, A. Adeli, “Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis”, Seizure, Vol. 26, pp. 56-64, Mar. 2015.
[19] S. Nasehi, H. Pourghassem, “An optimal EEG-based emotion recognition algorithm using Gabor features”, WSEAS TRANSACTIONS on SIGNAL PROCESSING, Vol. 8, No. 3, pp. 87-99, July 2012.
[20] S. Momeni, H. Pourghassem, “An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using Curvelet transform and content selection strategy”, Journal of Medical Systems, Vol. 38, No. 8, pp. 1-16, Aug. 2014.
[21] S. Nasehi, H. Pourghassem, “A novel effective feature selection algorithm based on S-PCA and wavelet transform features in EEG signal”, IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp.114-117, May 2011.
[22] A. Samadi, H. Pourghassem, “Children detection algorithm based on statistical models and LDA in human face images”, International Conference on Communication Systems and Network Technologies (CSNT 2013), pp. 206-209, Gwalior, India, 6-8 April 2013.
[23] H. Pourghassem, S. Daneshvar, “A framework for medical image retrieval using merging-based classification with dependency probability-based relevance feedback”, Turkish Journal of Electrical Engineering and Computer Science, Vol. 21, No. 3, pp.882-896, 2013.
[24] M. Hashemian, H. Pourghassem, “Diagnosing autism spectrum disorders based on EEG analysis: A Survey”, Neurophysiology, Vol. 46, No. 2, pp. 183-195, April 2014.
[25] S. Nasehi, H. Pourghassem, “Online mental task classification based on DWT-PCA features and probabilistic neural network”, International Journal of Imaging and Robotics, Vol. 7, No. 1, pp. 110-118, Jan. 2012.
[26] X. Guanlei, W. Xiaotong, X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures”, Pattern Recognition,Vol. 42, No. 5, pp. 718-734, May 2009.
[27] Ch.C. Peter, Ch. Fan, N. Huang, “Derivative-optimized empirical mode decomposition for the Hilbert–Huang Transform”, Journal of Computational and Applied Mathematics, Vol. 259, No. 1, pp. 57-64, Mar. 2014.
[28] J. Yan, L. Lu, “Improved Hilbert–Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis”, Signal Processing, Vol. 98, pp. 74-87, May 2014.
[29] S. Carbajo, Esther, R.S. Carbajo, C. Mc Goldrick, B. Basu, “ASDAH: An automated structural change detection algorithm based on the Hilbert–Huang transform”, Mechanical Systems and Signal Processing, Vol. 47, No. 1, pp. 78-93, Aug. 2014.
[30] P. Ghaderyan, A. Abbasi, M.H. Sedaaghi, “An efficient seizure prediction method using KNN-based under sampling and linear frequency measures”, Journal of neuroscience methods, Vol. 232, pp. 134-142, July 2014.
[31] I. Saini, D. Singh, A. Khosla, “QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases”, Journal of Advanced Research, Vol. 4, No. 4, pp. 331-344, July 2013.
_||_