مروری بر ساختار و بهبود پارامترهای اصلی مبدلهای افزاینده غیرایزوله DC/DC
محورهای موضوعی : انرژی های تجدیدپذیرامید شریفیانا 1 , مجید دهقانی 2 * , غضنفر شاهقلیان 3 , سید محمد مهدی میرطلائی 4 , مسعود جباری 5
1 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
4 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
5 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: راندمان, مبدلهای غیر ایزوله, ضریب بهره ولتاژ, کلیدزنی نرم, ساختار رزونانسی, مداراهای اسنابر,
چکیده مقاله :
چکیده: تولید انرژی الکتریکی پاک از اساسیترین نیازهای پیش روی بشر امروز است. از این رو استفاده از نیروگاههایی تولید برق که سوختهای تجدیدپذیر و سازگار با محیط زیست (انرژیهای نو) بهعنوان سوخت پایه آنهاست، بشدت مورد اقبال قرار گرفته است. حال آنکه سطح ولتاژ خروجی نیروگاههای محلی تولید انرژی الکتریکی بر پایه انرژیهای نو، به عنوان ولتاژ ورودی طبقات بعدی (اینورترها و ...)، پایین است. از اینرو محققان سعی کردهاند با استفاده از مبدلهای افزایندهDC/DC این عیب را برطرف سازند. ساختارهای مربوط به این مبدلها بر اساس انتظارات طراح مانند ضریب بهره ولتاژ، توان خروجی، بازده، مشخصات ولتاژ ورودی و ... متفاوت است. مبدلهای افزاینده به کمک کلیدزنی و ذخیره انرژی در سلف خود، وظیفه افزایش ولتاژ DC را بر عهده دارند. اما همین ساختار ساده را میتوان به کمک ترفندهای جدید همچون، استفاده از تزویج مغناطیسی، افزودن مدارات افزاینده غیر فعال به ساختار مبدل، ایجاد ساختارهای کاملتر با بهره بردن از چندین کلید اکتیو و حتی ترکیب چند ساختار با هم به نقطه مطلوبی از نظر بهره ولتاژ رساند. از سوی دیگر با روشهای کلیدزنی نرم ( رزونانس و اسنابر و ...) راندمان مبدلهای افزاینده در محدوده قابل قبولی قرار میگیرند. در این مقاله، انواعی از نیروگاههای بر پایه انرژیهای نو و سپس مبدلهای افزاینده که از اساسیترین ارکان یک نیروگاه بر پایه انرژیهای نو هستند، از نظر ساختارهای افزاینده و روشهای کاربردی جهت بهینهسازی این مبدلها به خصوص از نظر کاهش تلفات و افزایش راندمان دستهبندی شده است.
Abstract: The production of clean electricity is one of the most basic human needs today. Therefore, the use of power plants that use renewable and environmentally friendly fuels (new energy) as their base fuel, has been highly appreciated. However, the output voltage level of local power plants based on new energies is as low as the input voltage of the next floors (inverters, etc.). Therefore, researchers have tried to solve this defect by using DC / DC boost converters. The structures related to these converters are different based on the designer's expectations such as voltage gain, output power, efficiency, input voltage specifications, etc. Boost converters are responsible for increasing the DC voltage by switching and storing energy in their inductor. But the same simple structure can be created with the help of new tricks such as using magnetic coupling, adding passive incremental circuits to the converter structure, creating more complete structures by using several active switches and even combining several structures together to the desired point in terms of voltage gain. On the other hand, with soft switching methods (resonance, snubber, etc.), the efficiency of boost converters is in the acceptable range. In this paper, the types of power plants based on new energy and then boost converters, which are the most basic elements of a power plant based on new energy, it is categorized in terms of incremental structures and applied methods for optimizing these converters, especially in terms of reducing losses and increasing efficiency.
[1] M. Das, V. Agarwal, "Design and analysis of a high efficiency dc-dc converter with soft switching capability for renewable energy applications requiring high voltage gain", IEEE Trans. on Industrial Electronics, vol. 63, no. 5, pp. 2936-2944, Ma. 2016 (doi:10.1109/TIE.2016.2515565).
[2] A. Asharfpour, G. Shahgholian, “Harmonics generated by hydroelectric power plants and wind farms in the power system”, International Journal Natural and Engineering Sciences, vol. 14, no. 2, pp. 21-40, 2020.
[3] M. H. Rahman, S. K. Ghosh, M. S. Islam, A. K. Paul, "Design and analysis of a high efficiency modified dc-dc step up converter for PV system", Proceeding of the IEEE/PEEIACON, pp. 23-26, Dhaka, Bangladesh, Dec. 2019 (doi: 10.1109/PEEIACON48840.2019.9071949).
[4] H. Ma, R. Zee, B. Nauta, "Design and analysis of a high-efficiency high-voltage class-d power output stage", IEEE Journal of Solid-State Circuits, vol. 49, no. 7, pp. 1514-1524, July 2014 (doi: 10.1109/JSSC.2014.2317780).
[5] M. Moradian, A. Soltani-Mohammadi, "A new control system for a dual stator-winding cage rotor induction generator in direct grid connected condition with maximum power point tracking of wind turbine”, Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 35, pp. 3-10, Autumn 2019.
[6] G. Shahgholian, K. Khani, M. Moazzami, "Frequency control in autanamous microgrid in the presence of DFIG based wind turbine", Journal of Intelligent Procedures in Electrical Technology, Vol. 6, No. 23, pp. 3-12, Autumn 2015.
[7] S. Hasanpour, Y. Siwakoti, F. Blaabjerg, "Hybrid cascaded high step-up dc/dc converter with continuous input current for renewable energy applications", IET Power Electronics, vol. 13, no. 15, pp. 3487-3495, Nov. 2020 (doi: 10.1049/iet-pel.2020.0544).
[8] W. Li, and X. He, "Review of non-isolated high-step-up dc/dc converters in photovoltaic grid-connected applications", IEEE Trans. on Industrial Electronics, vol. 58, no.4, pp.1239-1250, Apr. 2011 (doi 10.1109/TIA.2018.2814563).
[9] M.H. Taghvaee, M.A.M. Radzi, S.M. Moosavain, H. Hizam, M. H. Marhaban, “A current and future study on non-isolated dc–dc converters for photovoltaic applications”, Renewable and Sustainable Energy Reviews, vol. 17, pp. 216-227,Oct. 2013 (doi: 10.1016/j.rser.2012.09.023).
[10] L. Po, L. Ruiyu, S. Tianying, Z. Jingrui, F. Zheng, "Composite adaptive model predictive control for dc-dc boost converters", IET Power Electronics, vol. 11, no. 10, pp. 1706-1717, Aug. 2018 (doi: 10.1049/iet-pel.2017.0835).
[11] M. Veerachary, P. Kumar, "Analysis and design of quasi-z-source equivalent dc–dc boost converters", IEEE Trans. on Industry Applications, vol. 56, no. 6, pp. 6642-6656, Nov/Dec. 2020 (doi: 10.1109/TIA.2020.3021372).
[12] A. Affam, Y. Buswig, A. H. Othman, N. B. Julai, O. Qays, “A review of multiple input dc-dc converter topologies linked with hybrid electric vehicles and renewable energy systems”, Renewable and Sustainable Energy Reviews, vol. 135, Article Number: 110186, 2021 (doi: 10.1016/j.rser.2020.110186).
[13] B. S. Revathi, M. Prabhakar, “Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review”, Renewable and Sustainable Energy Reviews, vol. 66, pp. 920-933, Dec. 2016 (doi: 10.1016/j.rser.2016.08.057).
[14] S. Lee, H. Do, "Zero-ripple input-current high-step-up boost–SEPIC dc–dc converter with reduced switch-voltage stress", IEEE Trans. on Power Electronics, vol. 32, no. 8, pp. 6170-6177, Aug. 2017 (doi: 10.1109/TPEL.2016.2615303).
[15] S. Sivakumar, M. JagabarSathik, P. S. Manoj, G. Sundararajan, "An assessment on performance of dc–dc converters for renewable energy applications", Renewable and Sustainable Energy Reviews, vol 58, pp. 1475-1485, Ma. 2016 (doi: 10.1016/j.rser.2015.12.057).
[16] M. Larrañaga Aizpurua, Z. Leonowicz, "Advanced solar energy systems with thermoelectric generators", Proceeding of the IEEE/EEEIC, pp. 1-4, Palermo, Italy, June 2018 (doi: 10.1109/EEEIC.2018.8493685).
[17] M. Zamani, G. H. Riahy, N. Abdolghani, M. H. Zamani, G. Shahgholian, "Utilization of thermal energy storage for reducing battery bank size of hybrid (wind-PV) systems", Proceeding of the IEEE/ICCEP, pp. 709-714, Ischia, Italy, June 2011 (doi: 10.1109/ICCEP.2011.6036358).
[18] K. Anoune, M. Bouya, M. Ghazouani, A. Astito, A. B. Abdellah, "Hybrid renewable energy system to maximize the electrical power production", Proceeding of the IEEE/IRSEC, pp. 533-539, Marrakech, Morocco, Nov. 2016 (doi: 10.1109/IRSEC.2016.7983992).
[19] M. Abbasi, J. Lam, "A very high gain modular three-phase ac/dc soft-switched converter featuring high gain ZCS output rectifier modules without using step-up transformers for dc grid in wind systems", IEEE Trans. on Industry Applications, vol. 54, no. 4, 3723-3736, July/Aug. 2018 (doi: 10.1109/TIA.2018.2814563).
[20] V. Yaramasu, B. Wu, P.C. Sen, S. Kouro, M. Narimani, "Highpower wind energy conversion systems: State-of-the-art and emerging technologies", IEEE Trans. on Industrial Electronics, vol. 103, no. 5, pp. 740-788, Ma. 2015 (doi:10.1109/TIA.2018.2811572).
[21] X. Fang, X. Ding, S. Zhong, Y. Tian, "Improved quasi-Y-source dc-dc converter for renewable energy", CPSS Trans. on Power Electronics and Applications, vol. 4, no. 2, pp. 163-170, Jun. 2019 (doi: 10.24295/CPSSTPEA.2019.00016).
[22] G. Shahgholian, “An overview of hydroelectric power plant: Operation, modeling, and control”, Journal of Renewable Energy and Environment, vol. 7, no. 3, pp. 14-28, Summer 2020 (10.30501/JREE.2020.221567.1087).
[23] M.L. Alghaythi, R.M. O’Connell, N.E. Islam, M.M.S. Khan, J.M. Guerrero, "A high step-up interleaved dc-dc converter with voltage multiplier and coupled inductors for renewable energy systems", IEEE Access, vol. 8, pp. 123165-123174, 2020 (doi: 10.1109/ACCESS.2020.3007137).
[24] B. P. Baddipadiga, "A family of high-voltage-gain dc-dc gonverters based on a generalized structure", IEEE Trans. on Sustain. Energy, vol. 3, no. 3, pp. 318–329, July 2012 (doi: 10.1109/TPEL.2017.2777451).
[25] A. Amir, A. Amir, H.S. Che, A. Elkhateb, N.A. Rahim, “Comparative analysis of high voltage gain dc-dc converter topologies for photovoltaic systems”, Renewable Energy, vol. 136, pp. 1147-1163, Jun. 2019 (doi: 10.1016/j.renene.2018.09.089).
[26] T. Arunkumari, V. Indragandhi, “An overview of high voltage conversion ratio dc-dc converter configurations used in DC micro-grid architectures”, Renewable and Sustainable Energy Reviews, vol. 77, pp. 670-687, 2017 (doi: 10.1016/j.rser.2017.04.036).
[27] M. Mirtalaee, R. Amani-Nafchi, “Boost high step-up dc/dc converter with coupled inductors and diode-capacitor Technique”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 39, pp. 3-12, Autumn 2019.
[28] A. Nourbehesht, M. Jabbari, “Design and implementation of a new resonant soft-switching dc/dc buck converter”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 38, pp. 3-12, Summer 2019.
[29] C. Tu, X. Yu, F. Xiao, B. Liu, Q. Guo, "Transient DC bias suppression of three-port isolated DC–DC converter", IET Power Electronics, vol. 13, no. 16, pp. 3787-3796, Nov. 2020 (doi: 10.1049/iet-pel.2020.0239).
[30] R. Yin, M. Shi, W. Hu, J. Guo, P. Hu, Y. Wang, "An accelerated model of modular isolated dc/dc converter used in offshore dc wind farm", IEEE Trans. on Power Electronics, vol. 34, no. 4, pp. 3150-3163, Apr. 2019 (doi: 10.1109/TPEL.2018.2854739).
[31] G. Dileep, S.N. Singh, “Selection of non-isolated dc-dc converters for solar photovoltaic system”, Renewable and Sustainable Energy Reviews, vol. 76, pp. 1230-1247, Sept. 2017 (doi: 10.1016/j.rser.2017.03.130).
[32] M. E. Başoğlu, B. Çakır, “Comparisons of MPPT performances of isolated and non-isolated dc–dc converters by using a new approach, Renewable and Sustainable Energy Reviews, vol. 60, pp. 1100-1113, July 2016 (doi: 10.1016/j.rser.2016.01.128).
[33] U.M. Choi, K.B. Lee, F. Blaabjerg, "Power electronics for renewable energy systems: wind turbine and photovoltaic systems", Proceeding of the IEEE/ICRERA, pp. 1-8, Nagasaki, Japan, Nov. 2012 (doi: 10.1109/ICRERA.2012.6477249).
[34] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc-dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146-1153, July 2011 (doi: 10.1109/TIA.2018.2816345).
[35] R.P. Torrico-Bascopé, L. F. Costa, G. V. Torrico-Bascopé, "Generation of new nonisolated high voltage gain DC-DC converters", Proceeding of the IEEE/INTLEC, pp. 1-8, Amsterdam, Netherlands, Oct. 2011 (doi: 10.1109/INTLEC.2011.6099836).
[36] E. Mattos, A. M. S. S. Andrade, G. V. Hollweg, J. R. Pinheiro, M. L. S. Martins, "A review of boost converter analysis and desing in aerospace applications", IEEE Latin America Trans., vol. 16, no. 2, pp. 305-313, Feb. 2018 (doi: 10.1109/TLA.2018.8327380).
[37] S. Lee, H. Do, "High step-up coupled-inductor cascade boost dc–dc converter with lossless passive snubber", IEEE Trans. on Industrial Electronics, vol. 65, no. 10, pp. 7753-7761, Oct. 2018 (doi: 10.1109/TIE.2018.2803731).
[38] N. Vazquez, L. Estrada, C. Hernandez, E. Rodriguez, "The tapped-inductor boost converter", Proceeding of the IEEE/ISIE, pp. 538-543, Vigo, Spain, Jun. 2007 (doi: 10.1109/ISIE.2007.4374654).
[39] W. Li, X. He, "An interleaved winding-coupled boost converter with passive lossless clamp circuits," in IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1499-1507, July 2007 (doi: 10.1109/TPEL.2007.900521).
[40] Y. Berkovich and B. Axelrod, "Switched-coupled inductor cell for DC-DC converters with very large conversion ratio", IET Power Electronics, vol. 4, no. 3, pp. 309-315, Ma. 2011 (doi: 10.1049/iet-pel.2009.0341).
[41] Q. Zhao, F.C. Lee, "High-efficiency, high step-up DC-DC converters", IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003 (doi: 10.1109/TPEL.2002.807188).
[42] T. Wu, Y. Lai, J. Hung and Y. Chen, "Boost converter with coupled inductors and buck–boost type of active clamp", IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008 (doi: 10.1109/TIE.2007.903925).
[43] W. Rong-Jong, D. Rou-Yong, "High step-up converter with coupled-inductor", IEEE Trans. on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sept. 2005 (doi: 10.1109/TPEL.2005.854023).
[44] B. Gu, J. Dominic, J. Lai, Z. Zhao, C. Liu, "High boost ratio hybrid transformer DC–DC converter for photovoltaic module applications", IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 2048-2058, Apr. 2013 (doi: 10.1109/TPEL.2012.2198834)
[45] Y. Hsieh, J. Chen, T. Liang, L. Yang, "Analysis and implementation of a novel single-switch high step-up DC-DC converter", IET Power Electronics, vol. 5, no. 1, pp. 11-21, Janu. 2012 (doi: 10.1049/iet-pel.2010.0279).
[46] R. Wai, C. Lin, R. Duan, Y. Chang, "High-efficiency DC-DC converter with high voltage gain and reduced switch stress", IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 354-364, Feb 2007 (doi: 10.1109/TIE.2006.888794).
[47] J.P.M. Figueiredo, F.L. Tofoli, R.L. Alves, "Comparison of nonisolated dc-dc converters from the efficiency point of view", Proceeding of the IEEE/COPEP, pp. 14-19, Natal, Brazil, Sept. 2011 (doi: 10.1109/COBEP.2011.6085174).
[48] W. Li, Y. Zhao, J. Wu, X. He, "Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells", IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 133-143, Jan. 2012 (doi: 10.1109/TPEL.2009.2028688).
[49] R. Verma, S. L. Shimi, "Analysis and review of DC-DC converter for electric vehicle", Proceeding of the IEEE/ICICCS, pp. 1649-1654, Madurai, India, Mar. 2019 (doi: 10.1109/ICCONS.2018.8663130).
[50] W. Martinez, C. A. Cortes, J. Imaoka, K. Umetani, M. Yamamoto, "Current ripple modeling of an interleaved high step-up converter with coupled inductor", Proceeding of the IEEE/IFEEC, pp. 1084-1089, Kaohsiung, Taiwan, June 2017 (doi: 10.1109/IFEEC.2017.7992192).
[51] W. Khadmun, W. Subsingha, “High voltage gain interleaved dc boost converter application for photovoltaic generation system”, Energy Procedia, vol. 34, pp. 390– 398, July 2013 (doi: 10.1016/j.egypro.2013.06.767).
[52] Y. Ping, X. Jianping, Z. Guohua, Z. Shiyu, "A new quadratic boost converter with high voltage step-up ratio and reduced voltage stress", Proceedings of The IEEE/IPEMC, pp. 1164-1168, Harbin, China, June 2012 (doi: 10.1109/IPEMC.2012.6258989).
[53] L. Huber, M. M. Jovanovic, "A design approach for server power supplies for networking applications", Proceeding of the IEEE/APEC, vol. 2, pp. 1163-1169, New Orleans, LA, USA, Feb. 2000 (doi: 10.1109/APEC.2000.822834).
[54] L. Po-Wa, L. Yim-Shu, D. K. W. Cheng, L. Xiu-Cheng, "Steady-state analysis of an interleaved boost converter with coupled inductors", IEEE Trans. on Industrial Electronics, vol. 47, no. 4, pp. 787-795, Aug. 2000 (doi: 10.1109/41.857959).
[55] H. Xudong, W. Xiaoyan, T. Nergaard, L. Jih-Sheng, X. Xingyi, Z. Lizhi, "Parasitic ringing and design issues of digitally controlled high power interleaved boost converters", IEEE Trans. on Power Electronics, vol. 19, no. 5, pp. 1341-1352, Sept. 2004 (doi: 10.1109/TPEL.2004.833434).
[56] Q. Zhao, F.C. Lee, "High performance coupled-inductor DC-DC converters", Proceeding of the IEEE/APEC, pp. 109-113 vol.1, Miami Beach, FL, USA, Feb. 2003 (doi: 10.1109/APEC.2003.1179184).
[57] H. Seong, H. Kim, K. Park, G. Moon, M. Youn, "High step-up DC-DC converters using zero-voltage switching boost integration technique and light-load frequency modulation control", IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1383-1400, Mar. 2012 (doi: 10.1109/TPEL.2011.2162966).
[58] J. Won Baek, R. Myung-Hyo, K. Tae-Jin, Y. Dong-Wook, K. Jong-Soo, "High boost converter using voltage multiplier", Proceeding of the IEEE/IECON, pp. 1-6, Raleigh, NC, USA, Nov. 2005 (doi: 10.1109/IECON.2005.1568967).
[59] T. Liang, S. Chen, L. Yang, J. Chen, A. Ioinovici, "Ultra-large gain step-up switched-capacitor dc-dc converter with coupled inductor for alternative sources of energy", IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 864-874, Apr. 2012 (doi: 10.1109/TCSI.2011.2169886).
[60] S.V. Araujo, R.P. Torrico-Bascope, G.V. Torrico-Bascope, "Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell", IEEE Trans. on Industrial Electronics, vol. 57, no. 6, pp. 1987-1997, June 2010 (doi: 10.1109/TIE.2009.2029521).
[61] G.V. Torrico-bascope, S.A. Vasconcelos, R.P. Torrico-bascope, F.L. M. Antunes, D.S. De Oliveira, C.G.C. Branco, "A high step-up dc-dc converter based on three-state switching cell", Proceeding of the IEEE/ISIE, pp. 998-1003, Montreal, QC, Canada, July 2006 (doi: 10.1109/ISIE.2006.295772).
[62] F.L. Tofoli, D.S. Oliveira, R.P. Torrico-Bascopé, Y.J.A. Alcazar, "Novel nonisolated high-voltage gain dc–dc converters based on 3SSC and VMC", IEEE Trans. on Power Electronics, vol. 27, no. 9, pp. 3897-3907, Sept. 2012 (doi: 10.1109/TPEL.2012.2190943).
[63] E. F. de Oliveira, G. A. T. Hertz, M. de C. Gino, R. P. Torrico-Bascopé, "Magnetically coupled bidirectional dc-dc converter based on the three state switching cell", Proceeding of the IEEE/COBEP, pp. 679-685, Bonito-Mato Grosso do Sul, Brazil, Oct. 2009 (doi: 10.1109/COBEP.2009.5347606).
[64] S. L. Brockveld, G. Waltrich, "Boost–flyback converter with interleaved input current and output voltage series connection", IET Power Electronics, vol. 11, no. 8, pp. 1463-1471, 2018 (doi: 10.1049/iet-pel.2017.0657).
[65] K. Tseng, J. Chen, J. Lin, C. Huang, T. Yen, "High step-up interleaved forward-flyback boost converter with three-winding coupled inductors", IEEE Trans. on Power Electronics, vol. 30, no. 9, pp. 4696-4703, Sept. 2015 (doi: 10.1109/TPEL.2014.2364292).
[66] Y. Zhang, J. Shi, L. Zhou, J. Li, M. Sumner, P. Wang, C. Xia, "Wide input-voltage range boost three-level dc–dc converter with quasi-Z source for fuel cell vehicles”, IEEE Trans. on Power Electronics, vol. 32, no. 9, pp. 6728-6738, Sept. 2017 (doi: 10.1109/TPEL.2016.2625327).
[67] A. Ganjavi, H. Ghoreishy, A. A. Ahmad, "A novel single-input dual-output three-level dc–dc converter", IEEE Trans. on Industrial Electronics, vol. 65, no. 10, pp. 8101-8111, Oct. 2018 (doi: 10.1109/TIE.2018.2807384).
[68] L. Bor-Ren, L. Hsin-Hung, "Single-phase three-level PWM rectifier", Proceedings of the IEEE/PEDS, vol. 1, pp. 63-68, Hong Kong, Hong Kong, July 1999 (doi: 10.1109/PEDS.1999.794537).
[69] G. Revana, V.R. Kota, “Simulation and implementation of resonant controller based PV fed cascaded boost-converter three phase five-level inverter system”, Journal of King Saud University- Engineering Sciences, vol. 32, no. 7, pp. 411-424, Nov. 2020 (doi: 10.1016/j.jksues.2019.04.002).
[70] F. Xiaogang, L. Jinjun, F.C. Lee, "Impedance specifications for stable DC distributed power systems", IEEE Trans. on Power Electronics, vol. 17, no. 2, pp. 157-162, March 2002, (doi: 10.1109/63.988825).
[71] O. Abutbul, A. Gherlitz, Y. Berkovich, A. Ioinovici, "Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit", IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098-1102, Aug. 2003 (doi: 10.1109/TCSI.2003.815206).
[72] J. C. Rosas-Caro, J.M. Ramirez, F.Z. Peng, A. Valderrabano, "A DC-DC multilevel boost converter", IET Power Electronics, vol. 3, no. 1, pp. 129-137, Jan. 2010 (doi: 10.1049/iet-pel.2008.0253).
[73] Y. Tang, T. Wang, Y. He, "A switched-capacitor-based active-network converter with high voltage gain", IEEE Trans. on Power Electronics, vol. 29, no. 6, pp. 2959-2968, June 2014 (doi: 10.1109/TPEL.2013.2272639).
[74] S. Chen, M. Lao, Y. Hsieh, T. Liang, K. Chen, "A novel switched-coupled-inductor dc–dc step-up converter and Its derivatives", IEEE Trans. on Industrial Electronics, vol. 51, no. 1, pp. 309-314, Jan./Feb. 2015, (doi 10.1109/TIA.2014.2332642).
[75] Y. Shen, Lung, "Transformerless DC–DC converters with high step-up voltage gain", IEEE Trans. on Power Electronics, vol. 56, no. 8, pp. 3142-3155, Aug. 2009 (doi 10.1109/TIE.2017.2746335).
[76] R.J. Wai, C.Y. Lin, R.Y. Duan, Y.R. Chang, "High-efficiency dc–dc converter with high voltage gain and reduced switch stress", IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 354–364, Feb. 2007 (doi 10.1109/TIE.2009.2031197).
[77] M. Lakshmi, "Non-isolated high gain dc-dc converter for dc microgrids", IEEE Trans. on Power Electronics, vol. 56, no. 8, pp. 1205-1212, Aug. 2017 (doi 10.1109/TIE.2017.2733463).
[78] L.S. Yang. T.J. Liang, "A Bidirectional Modular Multilevel dc-dc Converter of Triangular Structure", IEEE Trans. on Industrial Electronics, vol. 59, no. 1, pp. 422-434, Jan. 2014 (doi 10.1109/TIE.2009.2022512).
[79] D.R. Garth, W.J. Muldoon, G.C. Benson, Ε.N. Costague, "Multi-phase, 2-kilowatt, high-voltage, regulated power supply", Proceeding of the IEEE/PESC, pp. 110-116, Pasadena, CA, USA, April 1971 (doi: 10.1109/PESC.1971.7069141).
[80] M.T. Zhang, Y. Jiang, F.C. Lee, M.M. Jovanovic, "Single-phase three-level boost power factor correction converter", Proceedings of the IEEE/APEC, pp. 434-439 vol.1, Dallas, TX, USA, March 1995 (doi: 10.1109/APEC.1995.468984).
[81] L. Huber, M.M. Jovanovic, "A design approach for server power supplies for networking applications", Proceedings of the IEEE/APEC, vol.2, pp. 1163-1169, New Orleans, LA, USA, Feb. 2000 (doi: 10.1109/APEC.2000.822834).
[82] F.S.F. Silva, A.A.A Freitas, S. Daher, S.C. Ximenes, S.K.A. Sousa, M. S. Edilson, F.L.M. Antunes, C.M.T. Cruz, "High gain dc-dc boost converter with a coupling inductor", Proceeding of the IEEE/COPEP, pp. 486-492, Bonito-Mato Grosso do Sul, Brazil, Oct. 2009 (doi: 10.1109/COBEP.2009.5347668).
[83] K.C. Tseng, T.J. Liang, "Novel high-efficiency step-up converter", IEE Proceedings-Electric Power Applications, vol. 151, no. 2, pp. 182-190, 9 Mar. 2004 (doi: 10.1049/ip-epa:20040022).
[84] B. Ju-Won, R. Myung-Hyo, K. Tae-Jin, Y. Dong-Wook, K. Jong-Soo, "High boost converter using voltage multiplier", Proceeding of the IEEE/IECON, pp. 1-6, Raleigh, NC, USA, Nov. 2005 (doi: 10.1109/IECON.2005.1568967).
[85] J.C. Rosas-Caro, J.M. Ramirez, P.M. Garcia-Vite, "Novel dc-dc multilevel boost converter", Proceeding of the IEEE/PESC, pp. 2146-2151, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592260).
[86] C. Pan, C. Chuang, C. Chu, "A novel transformer-less adaptable voltage quadrupler dc converter with low switch voltage stress", IEEE Trans. on Power Electronics, vol. 29, no. 9, pp. 4787-4796, Sept. 2014 (doi: 10.1109/TPEL.2013.2287020).
[87] R. Gules, L. L. Pfitscher, L. C. Franco, "An interleaved boost dc-dc converter with large conversion ratio", Proceeding of the IEEE/ISIE, vol. 1, pp. 411-416, Rio de Janeiro, Brazil , June 2003 (doi: 10.1109/ISIE.2003.1267284).
[88] L. Zhou, B. Zhu, Q. Luo, S. Chen, "Interleaved non-isolated high step-up dc-dc converter based on the diode-capacitor multiplier", IET Power Electronics, vol. 7, no. 2, pp. 390-397, Feb. 2014 (doi: 10.1049/iet-pel.2013.0124).
[89] G.A.L. Henn, R.N.A.L. Silva, P.P. Praça, L.H.S.C. Barreto, D.S. Oliveira, "Interleaved-boost converter with high voltage gain", IEEE Trans. on Power Electronics, vol. 25, no. 11, pp. 2753-2761, Nov. 2010 (doi: 10.1109/TPEL.2010.2049379).
[90] S.V. Araujo, R.P.T. Bascope, G.V.T. Bascope, L. Menezes, "Step-up converter with high voltage gain employing three-state switching cell and voltage multiplier", Proceeding of the IEEE/PESC, pp. 2271-2277, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592279).
[91] G.C. Silveira, F.L. Tofoli, L.D.S. Bezerra, R.P. Torrico-Bascopé, "A nonisolated DC–DC boost converter with high voltage gain and balanced output voltage", IEEE Trans. on Industrial Electronics, vol. 61, no. 12, pp. 6739-6746, Dec. 2014 (doi: 10.1109/TIE.2014.2317136).
[92] C. Bai, B. Han, B. Kwon, M. Kim, "Highly efficient bidirectional series-resonant dc/dc converter over wide range of battery voltages", IEEE Trans. on Power Electronics, vol. 35, no. 4, pp. 3636-3650, April 2020 (doi: 10.1109/TPEL.2019.2933408).
[93] W. Hongyang, H. Xiangning, "Single phase three-level power factor correction circuit with passive lossless snubber", IEEE Trans. on Power Electronics, vol. 17, no. 6, pp. 946-953, Nov. 2002 (doi: 10.1109/TPEL.2002.805578).
[94] T. Zhan, Y. Zhang, J. Nie, Y. Zhang, Z. Zhao, "A novel soft-switching boost converter with magnetically coupled resonant snubber", IEEE Trans. on Power Electronics, vol. 29, no. 11, pp. 5680-5687, Nov. 2014 (doi: 10.1109/TPEL.2013.2295887).
[95] M. Jabbari, U.D. Tehrani, "Double-boost switched-resonator converter", IET Power Electronics, vol. 11, no. 8, pp. 1382-1388, June 2018 (doi: 10.1049/iet-pel.2017.0490).
[96] M. Delshad, E. Shahri, "A new soft switching interleaved boost converter with high voltage gain", Proceeding of the IEEE/ECTI, pp. 744-747, Khon Kaen, Thailand, May 2011 (doi: 10.1109/ECTICON.2011.5947947).
[97] J. Kim, M. Park, J. Han, M. Lee, J. Lai, "PWM resonant converter with asymmetric modulation for ZVS active voltage doubler rectifier and forced half resonance in PV application", IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 508-521, Jan. 2020 (doi: 10.1109/TPEL.2019.2914016).
[98] Y. Shang, C. Zhang, N. Cui, J. M. Guerrero, "A cell-to-cell battery equalizer with zero-current switching and zero-voltage gap based on quasi-resonant LC converter and boost converter", IEEE Trans. on Power Electronics, vol. 30, no. 7, pp. 3731-3747, July 2015 (doi: 10.1109/TPEL.2014.2345672).
[99] R.N.A.L. Silva, G.A.L. Henn, P.P. Praca, L.H.S.C. Barreto, D.S. Oliveira, F.L.M. Antunes, "Soft-switching interleaved boost converter with high voltage gain", Proceeding of the IEEE/PESC, pp. 4157-4161, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592607).
[100] C.M.O. Stein, J.R. Pinheiro, H.L. Hey, "A ZCT auxiliary commutation circuit for interleaved boost converters operating in critical conduction mode", IEEE Trans. on Power Electronics, vol. 17, no. 6, pp. 954-962, Nov. 2002 (doi: 10.1109/TPEL.2002.805607).
[101] E. Roshandel, S. Kahourzade, A. Mahmoudi, "High step-up dc-dc converter for traction drives supplied by fuel cells", Proceeding of the IEEE/VPPC, pp. 1-6, Hanoi, Vietnam, Oct. 2019 (doi: 10.1109/VPPC46532.2019.8952343).
[102] T. Shamsi, M. Delshad, E. Adib, M.R. Yazdani, "A new simple-structure passive lossless snubber for dc–dc boost converters", IEEE Trans. on Industrial Electronics, vol. 68, no. 3, pp. 2207-2214, March 2021 (doi: 10.1109/TIE.2020.2973906).
[103] M.R. Mohammadi, H. Farzanehfard, E. Adib, "Soft-switching bidirectional buck/boost converter with a lossless passive snubber", IEEE Trans. on Industrial Electronics, vol. 67, no. 10, pp. 8363-8370, Oct. 2020 (doi: 10.1109/TIE.2019.2947850).
[104] M.A.N. Kasiran, A. Ponniran, M.H. Yatim, J. Itoh, "Evaluation of high power density achievement of optimum 4-level capacitor-clamped DC–DC boost converter with passive lossless snubber circuit by using Pareto-Front method", IET Power Electronics, vol. 13, no. 1, pp. 40-49, 7 1 2020 (doi: 10.1049/iet-pel.2019.0604).
[105] T. Kjellqvist, S. Ostlund, S. Norrga, "Active snubber circuit for source commutated converters utilizing the IGBT in the linear region", IEEE Trans. on Power Electronics, vol. 23, no. 5, pp. 2595-2601, Sept. 2008 (doi: 10.1109/TPEL.2008.2002093).
[106] H. Bodur, E. Akboy, H. Yeşilyurt, "A new and modular active snubber cell for inverters", IEEE Trans. on Industrial Electronics, vol. 67, no. 1, pp. 288-296, Jan. 2020 (doi: 10.1109/TIE.2019.2896126).
[107] N.D. Dao, D. Lee, "Passive soft-switching circuit for high power density SiC-based dc-dc boost converter", Proceeding of the IEEE/APEC, pp. 2136-2141, New Orleans, LA, USA, March 2020 (doi: 10.1109/APEC39645.2020.9124491).
[108] G. Yao, A. Chen, X. He, "Soft switching circuit for interleaved boost converters", IEEE Trans. on Power Electronics, vol. 22, no. 1, pp. 80-86, Jan. 2007 (doi: 10.1109/TPEL.2006.886649).
[109] H. Lee, J. Yun, "Quasi-resonant voltage doubler with snubber capacitor for boost half-bridge dc–dc converter in photovoltaic micro-inverter", IEEE Trans. on Power Electronics, vol. 34, no. 9, pp. 8377-8388, Sept. 2019 (doi: 10.1109/TPEL.2018.2883535).
[110] T. Isobe, K. Kato, N. Kojima, R. Shimada, "Soft-switching single-phase grid-connecting converter using dcm operation and a turn-off snubber capacitor", IEEE Trans. on Power Electronics, vol. 29, no. 6, pp. 2922-2930, June 2014 (doi: 10.1109/TPEL.2013.2274390).
[111] M.R. Ahmed, G. Calderon-Lopez, F. Bryan, R. Todd, A.J. Forsyth, "Soft-switching SiC interleaved boost converter", Proceeding of the IEEE/APEC, pp. 941-947, Charlotte, NC, USA, Marcah 2015 (doi: 10.1109/APEC.2015.7104462).
[112] T. Ching-Jung, C. Chern-Lin, "Novel ZVT-PWM converters with active snubbers", IEEE Trans. on Power Electronics, vol. 13, no. 5, pp. 861-869, Sept 1998, (doi: 10.1109/63.712292).
[113] H. Bodur, A. F. Bakan, "A new ZVT-PWM DC-DC converter", IEEE Trans. on Power Electronics, vol. 17, no. 1, pp. 40-47, Jan. 2002, (doi: 10.1109/63.988668).
[114] A.F. Bakan, H. Bodur, I. Askoy, "A novel ZVT-ZCT PWM DC-DC converter", Proceeding of the IEEE/EPE, pp. 1-8, Dresden, Germany, Aug. 2006 (doi: 10.1109/EPE.2005.219462).
[115] H. Bodur, A. F. Bakan, "A new ZVT-ZCT-PWM DC-DC converter", IEEE Trans. on Power Electronics, vol. 19, no. 3, pp. 676-684, March 2004 (doi: 10.1109/TPEL.2004.826490).
[116] L.H.S.C. Barreto, A.A. Pereira, V.J. Farias, L.C. Freitas, J.B. Vieira, "A boost converter associated with a new nondissipative snubber", Proceeding of the IEEE/APEC, vol. 2, pp. 1077-1083, Anaheim, CA, USA, Feb. 1998 (doi: 10.1109/APEC.1998.654031).
[117] T. Wu, Y. Chang, C. Chang, J. Yang, "Soft-switching boost converter with a flyback snubber for high power applications", IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1108-1119, Mar. 2012 (doi: 10.1109/TPEL.2011.2126024).
[118] M. M. Jovanovic, "A technique for reducing rectifier reverse-recovery-related losses in high-power boost converters", IEEE Trans. on Power Electronics, vol. 13, no. 5, pp. 932-941, Sept. 1998 (doi: 10.1109/63.712314).
[119] M. M. Jovanovic, Y. Jang, "A new, soft-switched boost converter with isolated active snubber", Proceeding of the IEEE/APEC, vol.2, pp. 1084-1090, Anaheim, CA, USA, Feb. 2002 (doi: 10.1109/APEC.1998.654032).
[120] S.R.B. Shah, S.M. Tadvin, M.R.T. Hossain, "A brief review of active snubber circuits for boost converter", Proceeding of the IEEE/I2CT, pp. 1-6, Pune, India, April 2018 (doi: 10.1109/I2CT.2018.8529668).
[121] N.S. Ting, I. Aksoy, Y. Sahin, "A new zero-voltage-transition PWM dc-dc boost converter", Proceeding of the IEEE/ACEMP, pp. 257-262, Side, Turkey, Sept. 2015 (doi: 10.1109/OPTIM.2015.7427027).
[122] S. Tandon, A.K. Rathore, B.L. Narasimharaju, "A ZVS series resonant current-fed PWM controlled dc-dc converter", Proceeding of the IEEE/ITEC, pp. 320-325, Chicago, IL, USA, June 2020 (doi: 10.1109/ITEC48692.2020.9161531).
[123] R. Jagadeesh, N. Vishwanathan, S. Porpandiselvi, "An efficient parallel resonant converter for LED lighting", Proceeding of the IEEE/NPSC, pp. 1-5, Tiruchirappalli, India, Dec. 2019 (doi: 10.1109/NPSC.2018.8771439).
[124] L. Dong-Yun, L, Min-Kwang, H, Dong-Seok, I. Choy, "New zero-current-transition PWM dc-dc converters without current stress", IEEE Trans. on Power Electornics, vol. 18, no. 1, pp. 95-104, Jan. 2003 (doi: 10.1109/TPEL.2002.807206).
[125] E. Chu, J. Bao, H. Xie, G. Hui, "A zero-voltage and zero-current switching interleaved two-switch forward fonverter with passive auxiliary resonant circuit", IEEE Trans. on Power Electronics, vol. 35, no. 5, pp. 4859-4876, March 2020 (doi: 10.1109/TPEL.2019.2944890).
[126] T.T. Song, N. Huang. A. Ioinovici, "A zero-voltage and zero-current switching three-level dc-dc converter with reduced rectifier voltage stress and soft-switching-oriented optimized design", IEEE Trans. on Power Electronics, vol. 21, no. 5, pp. 1204-1212, Sept. 2006 (doi: 10.1109/TPEL.2006.880351).
[127] H.N. Tran, A.M. Naradhipa, S. Kim, A. Tausif, "A fully soft-switched PWM dc-dc converter using An active-snubber-cell", Proceeding of the IEEE/IPEC, pp. 3833-3839, Niigata, Asia, Oct. 2018 (doi: 10.23919/IPEC.2018.8507448).
[128] T.F. Wu, Y.D. Chang, C.H. Chang, H.X. Lee, "Boost converter with various passive/active snubbers for reducing component stress and achieving high efficiency", Proceeding of the IEEE/PEDS, Taipei, Taiwan, Nov. 2009 (doi: 10.1109/PEDS.2009.5385795).
[129] H. Yeşilyurt, H. Bodur, "New active snubber cell for high power isolated PWM dc-dc converters", IET Circuits, Devices and Systems, vol. 13, no. 6, pp. 822-829, Oct. 2019 (doi: 10.1049/iet-cds.2018.5531).
[130] H. Lei, R. Hao, X. You, F. Li, "Nonisolated high step-up soft-switching dc-dc converter with interleaving and dickson switched-capacitor techniques", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2007-2021, Sept. 2020 (doi: 10.1109/JESTPE.2019.2958316).
[131] T. Mishima, M. Nakaoka, "Performance evaluation on a fixed-frequency ZCS-PWM asymmetrical half-bridge dc-dc converter with auxiliary active edge-resonant snubber", Proceeding of the IEEE/PESC, pp. 2177-2183, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592265).
_||_[1] M. Das, V. Agarwal, "Design and analysis of a high efficiency dc-dc converter with soft switching capability for renewable energy applications requiring high voltage gain", IEEE Trans. on Industrial Electronics, vol. 63, no. 5, pp. 2936-2944, Ma. 2016 (doi:10.1109/TIE.2016.2515565).
[2] A. Asharfpour, G. Shahgholian, “Harmonics generated by hydroelectric power plants and wind farms in the power system”, International Journal Natural and Engineering Sciences, vol. 14, no. 2, pp. 21-40, 2020.
[3] M. H. Rahman, S. K. Ghosh, M. S. Islam, A. K. Paul, "Design and analysis of a high efficiency modified dc-dc step up converter for PV system", Proceeding of the IEEE/PEEIACON, pp. 23-26, Dhaka, Bangladesh, Dec. 2019 (doi: 10.1109/PEEIACON48840.2019.9071949).
[4] H. Ma, R. Zee, B. Nauta, "Design and analysis of a high-efficiency high-voltage class-d power output stage", IEEE Journal of Solid-State Circuits, vol. 49, no. 7, pp. 1514-1524, July 2014 (doi: 10.1109/JSSC.2014.2317780).
[5] M. Moradian, A. Soltani-Mohammadi, "A new control system for a dual stator-winding cage rotor induction generator in direct grid connected condition with maximum power point tracking of wind turbine”, Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 35, pp. 3-10, Autumn 2019.
[6] G. Shahgholian, K. Khani, M. Moazzami, "Frequency control in autanamous microgrid in the presence of DFIG based wind turbine", Journal of Intelligent Procedures in Electrical Technology, Vol. 6, No. 23, pp. 3-12, Autumn 2015.
[7] S. Hasanpour, Y. Siwakoti, F. Blaabjerg, "Hybrid cascaded high step-up dc/dc converter with continuous input current for renewable energy applications", IET Power Electronics, vol. 13, no. 15, pp. 3487-3495, Nov. 2020 (doi: 10.1049/iet-pel.2020.0544).
[8] W. Li, and X. He, "Review of non-isolated high-step-up dc/dc converters in photovoltaic grid-connected applications", IEEE Trans. on Industrial Electronics, vol. 58, no.4, pp.1239-1250, Apr. 2011 (doi 10.1109/TIA.2018.2814563).
[9] M.H. Taghvaee, M.A.M. Radzi, S.M. Moosavain, H. Hizam, M. H. Marhaban, “A current and future study on non-isolated dc–dc converters for photovoltaic applications”, Renewable and Sustainable Energy Reviews, vol. 17, pp. 216-227,Oct. 2013 (doi: 10.1016/j.rser.2012.09.023).
[10] L. Po, L. Ruiyu, S. Tianying, Z. Jingrui, F. Zheng, "Composite adaptive model predictive control for dc-dc boost converters", IET Power Electronics, vol. 11, no. 10, pp. 1706-1717, Aug. 2018 (doi: 10.1049/iet-pel.2017.0835).
[11] M. Veerachary, P. Kumar, "Analysis and design of quasi-z-source equivalent dc–dc boost converters", IEEE Trans. on Industry Applications, vol. 56, no. 6, pp. 6642-6656, Nov/Dec. 2020 (doi: 10.1109/TIA.2020.3021372).
[12] A. Affam, Y. Buswig, A. H. Othman, N. B. Julai, O. Qays, “A review of multiple input dc-dc converter topologies linked with hybrid electric vehicles and renewable energy systems”, Renewable and Sustainable Energy Reviews, vol. 135, Article Number: 110186, 2021 (doi: 10.1016/j.rser.2020.110186).
[13] B. S. Revathi, M. Prabhakar, “Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review”, Renewable and Sustainable Energy Reviews, vol. 66, pp. 920-933, Dec. 2016 (doi: 10.1016/j.rser.2016.08.057).
[14] S. Lee, H. Do, "Zero-ripple input-current high-step-up boost–SEPIC dc–dc converter with reduced switch-voltage stress", IEEE Trans. on Power Electronics, vol. 32, no. 8, pp. 6170-6177, Aug. 2017 (doi: 10.1109/TPEL.2016.2615303).
[15] S. Sivakumar, M. JagabarSathik, P. S. Manoj, G. Sundararajan, "An assessment on performance of dc–dc converters for renewable energy applications", Renewable and Sustainable Energy Reviews, vol 58, pp. 1475-1485, Ma. 2016 (doi: 10.1016/j.rser.2015.12.057).
[16] M. Larrañaga Aizpurua, Z. Leonowicz, "Advanced solar energy systems with thermoelectric generators", Proceeding of the IEEE/EEEIC, pp. 1-4, Palermo, Italy, June 2018 (doi: 10.1109/EEEIC.2018.8493685).
[17] M. Zamani, G. H. Riahy, N. Abdolghani, M. H. Zamani, G. Shahgholian, "Utilization of thermal energy storage for reducing battery bank size of hybrid (wind-PV) systems", Proceeding of the IEEE/ICCEP, pp. 709-714, Ischia, Italy, June 2011 (doi: 10.1109/ICCEP.2011.6036358).
[18] K. Anoune, M. Bouya, M. Ghazouani, A. Astito, A. B. Abdellah, "Hybrid renewable energy system to maximize the electrical power production", Proceeding of the IEEE/IRSEC, pp. 533-539, Marrakech, Morocco, Nov. 2016 (doi: 10.1109/IRSEC.2016.7983992).
[19] M. Abbasi, J. Lam, "A very high gain modular three-phase ac/dc soft-switched converter featuring high gain ZCS output rectifier modules without using step-up transformers for dc grid in wind systems", IEEE Trans. on Industry Applications, vol. 54, no. 4, 3723-3736, July/Aug. 2018 (doi: 10.1109/TIA.2018.2814563).
[20] V. Yaramasu, B. Wu, P.C. Sen, S. Kouro, M. Narimani, "Highpower wind energy conversion systems: State-of-the-art and emerging technologies", IEEE Trans. on Industrial Electronics, vol. 103, no. 5, pp. 740-788, Ma. 2015 (doi:10.1109/TIA.2018.2811572).
[21] X. Fang, X. Ding, S. Zhong, Y. Tian, "Improved quasi-Y-source dc-dc converter for renewable energy", CPSS Trans. on Power Electronics and Applications, vol. 4, no. 2, pp. 163-170, Jun. 2019 (doi: 10.24295/CPSSTPEA.2019.00016).
[22] G. Shahgholian, “An overview of hydroelectric power plant: Operation, modeling, and control”, Journal of Renewable Energy and Environment, vol. 7, no. 3, pp. 14-28, Summer 2020 (10.30501/JREE.2020.221567.1087).
[23] M.L. Alghaythi, R.M. O’Connell, N.E. Islam, M.M.S. Khan, J.M. Guerrero, "A high step-up interleaved dc-dc converter with voltage multiplier and coupled inductors for renewable energy systems", IEEE Access, vol. 8, pp. 123165-123174, 2020 (doi: 10.1109/ACCESS.2020.3007137).
[24] B. P. Baddipadiga, "A family of high-voltage-gain dc-dc gonverters based on a generalized structure", IEEE Trans. on Sustain. Energy, vol. 3, no. 3, pp. 318–329, July 2012 (doi: 10.1109/TPEL.2017.2777451).
[25] A. Amir, A. Amir, H.S. Che, A. Elkhateb, N.A. Rahim, “Comparative analysis of high voltage gain dc-dc converter topologies for photovoltaic systems”, Renewable Energy, vol. 136, pp. 1147-1163, Jun. 2019 (doi: 10.1016/j.renene.2018.09.089).
[26] T. Arunkumari, V. Indragandhi, “An overview of high voltage conversion ratio dc-dc converter configurations used in DC micro-grid architectures”, Renewable and Sustainable Energy Reviews, vol. 77, pp. 670-687, 2017 (doi: 10.1016/j.rser.2017.04.036).
[27] M. Mirtalaee, R. Amani-Nafchi, “Boost high step-up dc/dc converter with coupled inductors and diode-capacitor Technique”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 39, pp. 3-12, Autumn 2019.
[28] A. Nourbehesht, M. Jabbari, “Design and implementation of a new resonant soft-switching dc/dc buck converter”, Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 38, pp. 3-12, Summer 2019.
[29] C. Tu, X. Yu, F. Xiao, B. Liu, Q. Guo, "Transient DC bias suppression of three-port isolated DC–DC converter", IET Power Electronics, vol. 13, no. 16, pp. 3787-3796, Nov. 2020 (doi: 10.1049/iet-pel.2020.0239).
[30] R. Yin, M. Shi, W. Hu, J. Guo, P. Hu, Y. Wang, "An accelerated model of modular isolated dc/dc converter used in offshore dc wind farm", IEEE Trans. on Power Electronics, vol. 34, no. 4, pp. 3150-3163, Apr. 2019 (doi: 10.1109/TPEL.2018.2854739).
[31] G. Dileep, S.N. Singh, “Selection of non-isolated dc-dc converters for solar photovoltaic system”, Renewable and Sustainable Energy Reviews, vol. 76, pp. 1230-1247, Sept. 2017 (doi: 10.1016/j.rser.2017.03.130).
[32] M. E. Başoğlu, B. Çakır, “Comparisons of MPPT performances of isolated and non-isolated dc–dc converters by using a new approach, Renewable and Sustainable Energy Reviews, vol. 60, pp. 1100-1113, July 2016 (doi: 10.1016/j.rser.2016.01.128).
[33] U.M. Choi, K.B. Lee, F. Blaabjerg, "Power electronics for renewable energy systems: wind turbine and photovoltaic systems", Proceeding of the IEEE/ICRERA, pp. 1-8, Nagasaki, Japan, Nov. 2012 (doi: 10.1109/ICRERA.2012.6477249).
[34] S.M. Chen, T.J. Liang, L.S. Yang, J.F. Chen, "A cascaded high step-up dc-dc converter with single switch for microsource applications", IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146-1153, July 2011 (doi: 10.1109/TIA.2018.2816345).
[35] R.P. Torrico-Bascopé, L. F. Costa, G. V. Torrico-Bascopé, "Generation of new nonisolated high voltage gain DC-DC converters", Proceeding of the IEEE/INTLEC, pp. 1-8, Amsterdam, Netherlands, Oct. 2011 (doi: 10.1109/INTLEC.2011.6099836).
[36] E. Mattos, A. M. S. S. Andrade, G. V. Hollweg, J. R. Pinheiro, M. L. S. Martins, "A review of boost converter analysis and desing in aerospace applications", IEEE Latin America Trans., vol. 16, no. 2, pp. 305-313, Feb. 2018 (doi: 10.1109/TLA.2018.8327380).
[37] S. Lee, H. Do, "High step-up coupled-inductor cascade boost dc–dc converter with lossless passive snubber", IEEE Trans. on Industrial Electronics, vol. 65, no. 10, pp. 7753-7761, Oct. 2018 (doi: 10.1109/TIE.2018.2803731).
[38] N. Vazquez, L. Estrada, C. Hernandez, E. Rodriguez, "The tapped-inductor boost converter", Proceeding of the IEEE/ISIE, pp. 538-543, Vigo, Spain, Jun. 2007 (doi: 10.1109/ISIE.2007.4374654).
[39] W. Li, X. He, "An interleaved winding-coupled boost converter with passive lossless clamp circuits," in IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1499-1507, July 2007 (doi: 10.1109/TPEL.2007.900521).
[40] Y. Berkovich and B. Axelrod, "Switched-coupled inductor cell for DC-DC converters with very large conversion ratio", IET Power Electronics, vol. 4, no. 3, pp. 309-315, Ma. 2011 (doi: 10.1049/iet-pel.2009.0341).
[41] Q. Zhao, F.C. Lee, "High-efficiency, high step-up DC-DC converters", IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003 (doi: 10.1109/TPEL.2002.807188).
[42] T. Wu, Y. Lai, J. Hung and Y. Chen, "Boost converter with coupled inductors and buck–boost type of active clamp", IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008 (doi: 10.1109/TIE.2007.903925).
[43] W. Rong-Jong, D. Rou-Yong, "High step-up converter with coupled-inductor", IEEE Trans. on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sept. 2005 (doi: 10.1109/TPEL.2005.854023).
[44] B. Gu, J. Dominic, J. Lai, Z. Zhao, C. Liu, "High boost ratio hybrid transformer DC–DC converter for photovoltaic module applications", IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 2048-2058, Apr. 2013 (doi: 10.1109/TPEL.2012.2198834)
[45] Y. Hsieh, J. Chen, T. Liang, L. Yang, "Analysis and implementation of a novel single-switch high step-up DC-DC converter", IET Power Electronics, vol. 5, no. 1, pp. 11-21, Janu. 2012 (doi: 10.1049/iet-pel.2010.0279).
[46] R. Wai, C. Lin, R. Duan, Y. Chang, "High-efficiency DC-DC converter with high voltage gain and reduced switch stress", IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 354-364, Feb 2007 (doi: 10.1109/TIE.2006.888794).
[47] J.P.M. Figueiredo, F.L. Tofoli, R.L. Alves, "Comparison of nonisolated dc-dc converters from the efficiency point of view", Proceeding of the IEEE/COPEP, pp. 14-19, Natal, Brazil, Sept. 2011 (doi: 10.1109/COBEP.2011.6085174).
[48] W. Li, Y. Zhao, J. Wu, X. He, "Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells", IEEE Trans. on Power Electronics, vol. 27, no. 1, pp. 133-143, Jan. 2012 (doi: 10.1109/TPEL.2009.2028688).
[49] R. Verma, S. L. Shimi, "Analysis and review of DC-DC converter for electric vehicle", Proceeding of the IEEE/ICICCS, pp. 1649-1654, Madurai, India, Mar. 2019 (doi: 10.1109/ICCONS.2018.8663130).
[50] W. Martinez, C. A. Cortes, J. Imaoka, K. Umetani, M. Yamamoto, "Current ripple modeling of an interleaved high step-up converter with coupled inductor", Proceeding of the IEEE/IFEEC, pp. 1084-1089, Kaohsiung, Taiwan, June 2017 (doi: 10.1109/IFEEC.2017.7992192).
[51] W. Khadmun, W. Subsingha, “High voltage gain interleaved dc boost converter application for photovoltaic generation system”, Energy Procedia, vol. 34, pp. 390– 398, July 2013 (doi: 10.1016/j.egypro.2013.06.767).
[52] Y. Ping, X. Jianping, Z. Guohua, Z. Shiyu, "A new quadratic boost converter with high voltage step-up ratio and reduced voltage stress", Proceedings of The IEEE/IPEMC, pp. 1164-1168, Harbin, China, June 2012 (doi: 10.1109/IPEMC.2012.6258989).
[53] L. Huber, M. M. Jovanovic, "A design approach for server power supplies for networking applications", Proceeding of the IEEE/APEC, vol. 2, pp. 1163-1169, New Orleans, LA, USA, Feb. 2000 (doi: 10.1109/APEC.2000.822834).
[54] L. Po-Wa, L. Yim-Shu, D. K. W. Cheng, L. Xiu-Cheng, "Steady-state analysis of an interleaved boost converter with coupled inductors", IEEE Trans. on Industrial Electronics, vol. 47, no. 4, pp. 787-795, Aug. 2000 (doi: 10.1109/41.857959).
[55] H. Xudong, W. Xiaoyan, T. Nergaard, L. Jih-Sheng, X. Xingyi, Z. Lizhi, "Parasitic ringing and design issues of digitally controlled high power interleaved boost converters", IEEE Trans. on Power Electronics, vol. 19, no. 5, pp. 1341-1352, Sept. 2004 (doi: 10.1109/TPEL.2004.833434).
[56] Q. Zhao, F.C. Lee, "High performance coupled-inductor DC-DC converters", Proceeding of the IEEE/APEC, pp. 109-113 vol.1, Miami Beach, FL, USA, Feb. 2003 (doi: 10.1109/APEC.2003.1179184).
[57] H. Seong, H. Kim, K. Park, G. Moon, M. Youn, "High step-up DC-DC converters using zero-voltage switching boost integration technique and light-load frequency modulation control", IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1383-1400, Mar. 2012 (doi: 10.1109/TPEL.2011.2162966).
[58] J. Won Baek, R. Myung-Hyo, K. Tae-Jin, Y. Dong-Wook, K. Jong-Soo, "High boost converter using voltage multiplier", Proceeding of the IEEE/IECON, pp. 1-6, Raleigh, NC, USA, Nov. 2005 (doi: 10.1109/IECON.2005.1568967).
[59] T. Liang, S. Chen, L. Yang, J. Chen, A. Ioinovici, "Ultra-large gain step-up switched-capacitor dc-dc converter with coupled inductor for alternative sources of energy", IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 864-874, Apr. 2012 (doi: 10.1109/TCSI.2011.2169886).
[60] S.V. Araujo, R.P. Torrico-Bascope, G.V. Torrico-Bascope, "Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell", IEEE Trans. on Industrial Electronics, vol. 57, no. 6, pp. 1987-1997, June 2010 (doi: 10.1109/TIE.2009.2029521).
[61] G.V. Torrico-bascope, S.A. Vasconcelos, R.P. Torrico-bascope, F.L. M. Antunes, D.S. De Oliveira, C.G.C. Branco, "A high step-up dc-dc converter based on three-state switching cell", Proceeding of the IEEE/ISIE, pp. 998-1003, Montreal, QC, Canada, July 2006 (doi: 10.1109/ISIE.2006.295772).
[62] F.L. Tofoli, D.S. Oliveira, R.P. Torrico-Bascopé, Y.J.A. Alcazar, "Novel nonisolated high-voltage gain dc–dc converters based on 3SSC and VMC", IEEE Trans. on Power Electronics, vol. 27, no. 9, pp. 3897-3907, Sept. 2012 (doi: 10.1109/TPEL.2012.2190943).
[63] E. F. de Oliveira, G. A. T. Hertz, M. de C. Gino, R. P. Torrico-Bascopé, "Magnetically coupled bidirectional dc-dc converter based on the three state switching cell", Proceeding of the IEEE/COBEP, pp. 679-685, Bonito-Mato Grosso do Sul, Brazil, Oct. 2009 (doi: 10.1109/COBEP.2009.5347606).
[64] S. L. Brockveld, G. Waltrich, "Boost–flyback converter with interleaved input current and output voltage series connection", IET Power Electronics, vol. 11, no. 8, pp. 1463-1471, 2018 (doi: 10.1049/iet-pel.2017.0657).
[65] K. Tseng, J. Chen, J. Lin, C. Huang, T. Yen, "High step-up interleaved forward-flyback boost converter with three-winding coupled inductors", IEEE Trans. on Power Electronics, vol. 30, no. 9, pp. 4696-4703, Sept. 2015 (doi: 10.1109/TPEL.2014.2364292).
[66] Y. Zhang, J. Shi, L. Zhou, J. Li, M. Sumner, P. Wang, C. Xia, "Wide input-voltage range boost three-level dc–dc converter with quasi-Z source for fuel cell vehicles”, IEEE Trans. on Power Electronics, vol. 32, no. 9, pp. 6728-6738, Sept. 2017 (doi: 10.1109/TPEL.2016.2625327).
[67] A. Ganjavi, H. Ghoreishy, A. A. Ahmad, "A novel single-input dual-output three-level dc–dc converter", IEEE Trans. on Industrial Electronics, vol. 65, no. 10, pp. 8101-8111, Oct. 2018 (doi: 10.1109/TIE.2018.2807384).
[68] L. Bor-Ren, L. Hsin-Hung, "Single-phase three-level PWM rectifier", Proceedings of the IEEE/PEDS, vol. 1, pp. 63-68, Hong Kong, Hong Kong, July 1999 (doi: 10.1109/PEDS.1999.794537).
[69] G. Revana, V.R. Kota, “Simulation and implementation of resonant controller based PV fed cascaded boost-converter three phase five-level inverter system”, Journal of King Saud University- Engineering Sciences, vol. 32, no. 7, pp. 411-424, Nov. 2020 (doi: 10.1016/j.jksues.2019.04.002).
[70] F. Xiaogang, L. Jinjun, F.C. Lee, "Impedance specifications for stable DC distributed power systems", IEEE Trans. on Power Electronics, vol. 17, no. 2, pp. 157-162, March 2002, (doi: 10.1109/63.988825).
[71] O. Abutbul, A. Gherlitz, Y. Berkovich, A. Ioinovici, "Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit", IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098-1102, Aug. 2003 (doi: 10.1109/TCSI.2003.815206).
[72] J. C. Rosas-Caro, J.M. Ramirez, F.Z. Peng, A. Valderrabano, "A DC-DC multilevel boost converter", IET Power Electronics, vol. 3, no. 1, pp. 129-137, Jan. 2010 (doi: 10.1049/iet-pel.2008.0253).
[73] Y. Tang, T. Wang, Y. He, "A switched-capacitor-based active-network converter with high voltage gain", IEEE Trans. on Power Electronics, vol. 29, no. 6, pp. 2959-2968, June 2014 (doi: 10.1109/TPEL.2013.2272639).
[74] S. Chen, M. Lao, Y. Hsieh, T. Liang, K. Chen, "A novel switched-coupled-inductor dc–dc step-up converter and Its derivatives", IEEE Trans. on Industrial Electronics, vol. 51, no. 1, pp. 309-314, Jan./Feb. 2015, (doi 10.1109/TIA.2014.2332642).
[75] Y. Shen, Lung, "Transformerless DC–DC converters with high step-up voltage gain", IEEE Trans. on Power Electronics, vol. 56, no. 8, pp. 3142-3155, Aug. 2009 (doi 10.1109/TIE.2017.2746335).
[76] R.J. Wai, C.Y. Lin, R.Y. Duan, Y.R. Chang, "High-efficiency dc–dc converter with high voltage gain and reduced switch stress", IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 354–364, Feb. 2007 (doi 10.1109/TIE.2009.2031197).
[77] M. Lakshmi, "Non-isolated high gain dc-dc converter for dc microgrids", IEEE Trans. on Power Electronics, vol. 56, no. 8, pp. 1205-1212, Aug. 2017 (doi 10.1109/TIE.2017.2733463).
[78] L.S. Yang. T.J. Liang, "A Bidirectional Modular Multilevel dc-dc Converter of Triangular Structure", IEEE Trans. on Industrial Electronics, vol. 59, no. 1, pp. 422-434, Jan. 2014 (doi 10.1109/TIE.2009.2022512).
[79] D.R. Garth, W.J. Muldoon, G.C. Benson, Ε.N. Costague, "Multi-phase, 2-kilowatt, high-voltage, regulated power supply", Proceeding of the IEEE/PESC, pp. 110-116, Pasadena, CA, USA, April 1971 (doi: 10.1109/PESC.1971.7069141).
[80] M.T. Zhang, Y. Jiang, F.C. Lee, M.M. Jovanovic, "Single-phase three-level boost power factor correction converter", Proceedings of the IEEE/APEC, pp. 434-439 vol.1, Dallas, TX, USA, March 1995 (doi: 10.1109/APEC.1995.468984).
[81] L. Huber, M.M. Jovanovic, "A design approach for server power supplies for networking applications", Proceedings of the IEEE/APEC, vol.2, pp. 1163-1169, New Orleans, LA, USA, Feb. 2000 (doi: 10.1109/APEC.2000.822834).
[82] F.S.F. Silva, A.A.A Freitas, S. Daher, S.C. Ximenes, S.K.A. Sousa, M. S. Edilson, F.L.M. Antunes, C.M.T. Cruz, "High gain dc-dc boost converter with a coupling inductor", Proceeding of the IEEE/COPEP, pp. 486-492, Bonito-Mato Grosso do Sul, Brazil, Oct. 2009 (doi: 10.1109/COBEP.2009.5347668).
[83] K.C. Tseng, T.J. Liang, "Novel high-efficiency step-up converter", IEE Proceedings-Electric Power Applications, vol. 151, no. 2, pp. 182-190, 9 Mar. 2004 (doi: 10.1049/ip-epa:20040022).
[84] B. Ju-Won, R. Myung-Hyo, K. Tae-Jin, Y. Dong-Wook, K. Jong-Soo, "High boost converter using voltage multiplier", Proceeding of the IEEE/IECON, pp. 1-6, Raleigh, NC, USA, Nov. 2005 (doi: 10.1109/IECON.2005.1568967).
[85] J.C. Rosas-Caro, J.M. Ramirez, P.M. Garcia-Vite, "Novel dc-dc multilevel boost converter", Proceeding of the IEEE/PESC, pp. 2146-2151, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592260).
[86] C. Pan, C. Chuang, C. Chu, "A novel transformer-less adaptable voltage quadrupler dc converter with low switch voltage stress", IEEE Trans. on Power Electronics, vol. 29, no. 9, pp. 4787-4796, Sept. 2014 (doi: 10.1109/TPEL.2013.2287020).
[87] R. Gules, L. L. Pfitscher, L. C. Franco, "An interleaved boost dc-dc converter with large conversion ratio", Proceeding of the IEEE/ISIE, vol. 1, pp. 411-416, Rio de Janeiro, Brazil , June 2003 (doi: 10.1109/ISIE.2003.1267284).
[88] L. Zhou, B. Zhu, Q. Luo, S. Chen, "Interleaved non-isolated high step-up dc-dc converter based on the diode-capacitor multiplier", IET Power Electronics, vol. 7, no. 2, pp. 390-397, Feb. 2014 (doi: 10.1049/iet-pel.2013.0124).
[89] G.A.L. Henn, R.N.A.L. Silva, P.P. Praça, L.H.S.C. Barreto, D.S. Oliveira, "Interleaved-boost converter with high voltage gain", IEEE Trans. on Power Electronics, vol. 25, no. 11, pp. 2753-2761, Nov. 2010 (doi: 10.1109/TPEL.2010.2049379).
[90] S.V. Araujo, R.P.T. Bascope, G.V.T. Bascope, L. Menezes, "Step-up converter with high voltage gain employing three-state switching cell and voltage multiplier", Proceeding of the IEEE/PESC, pp. 2271-2277, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592279).
[91] G.C. Silveira, F.L. Tofoli, L.D.S. Bezerra, R.P. Torrico-Bascopé, "A nonisolated DC–DC boost converter with high voltage gain and balanced output voltage", IEEE Trans. on Industrial Electronics, vol. 61, no. 12, pp. 6739-6746, Dec. 2014 (doi: 10.1109/TIE.2014.2317136).
[92] C. Bai, B. Han, B. Kwon, M. Kim, "Highly efficient bidirectional series-resonant dc/dc converter over wide range of battery voltages", IEEE Trans. on Power Electronics, vol. 35, no. 4, pp. 3636-3650, April 2020 (doi: 10.1109/TPEL.2019.2933408).
[93] W. Hongyang, H. Xiangning, "Single phase three-level power factor correction circuit with passive lossless snubber", IEEE Trans. on Power Electronics, vol. 17, no. 6, pp. 946-953, Nov. 2002 (doi: 10.1109/TPEL.2002.805578).
[94] T. Zhan, Y. Zhang, J. Nie, Y. Zhang, Z. Zhao, "A novel soft-switching boost converter with magnetically coupled resonant snubber", IEEE Trans. on Power Electronics, vol. 29, no. 11, pp. 5680-5687, Nov. 2014 (doi: 10.1109/TPEL.2013.2295887).
[95] M. Jabbari, U.D. Tehrani, "Double-boost switched-resonator converter", IET Power Electronics, vol. 11, no. 8, pp. 1382-1388, June 2018 (doi: 10.1049/iet-pel.2017.0490).
[96] M. Delshad, E. Shahri, "A new soft switching interleaved boost converter with high voltage gain", Proceeding of the IEEE/ECTI, pp. 744-747, Khon Kaen, Thailand, May 2011 (doi: 10.1109/ECTICON.2011.5947947).
[97] J. Kim, M. Park, J. Han, M. Lee, J. Lai, "PWM resonant converter with asymmetric modulation for ZVS active voltage doubler rectifier and forced half resonance in PV application", IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 508-521, Jan. 2020 (doi: 10.1109/TPEL.2019.2914016).
[98] Y. Shang, C. Zhang, N. Cui, J. M. Guerrero, "A cell-to-cell battery equalizer with zero-current switching and zero-voltage gap based on quasi-resonant LC converter and boost converter", IEEE Trans. on Power Electronics, vol. 30, no. 7, pp. 3731-3747, July 2015 (doi: 10.1109/TPEL.2014.2345672).
[99] R.N.A.L. Silva, G.A.L. Henn, P.P. Praca, L.H.S.C. Barreto, D.S. Oliveira, F.L.M. Antunes, "Soft-switching interleaved boost converter with high voltage gain", Proceeding of the IEEE/PESC, pp. 4157-4161, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592607).
[100] C.M.O. Stein, J.R. Pinheiro, H.L. Hey, "A ZCT auxiliary commutation circuit for interleaved boost converters operating in critical conduction mode", IEEE Trans. on Power Electronics, vol. 17, no. 6, pp. 954-962, Nov. 2002 (doi: 10.1109/TPEL.2002.805607).
[101] E. Roshandel, S. Kahourzade, A. Mahmoudi, "High step-up dc-dc converter for traction drives supplied by fuel cells", Proceeding of the IEEE/VPPC, pp. 1-6, Hanoi, Vietnam, Oct. 2019 (doi: 10.1109/VPPC46532.2019.8952343).
[102] T. Shamsi, M. Delshad, E. Adib, M.R. Yazdani, "A new simple-structure passive lossless snubber for dc–dc boost converters", IEEE Trans. on Industrial Electronics, vol. 68, no. 3, pp. 2207-2214, March 2021 (doi: 10.1109/TIE.2020.2973906).
[103] M.R. Mohammadi, H. Farzanehfard, E. Adib, "Soft-switching bidirectional buck/boost converter with a lossless passive snubber", IEEE Trans. on Industrial Electronics, vol. 67, no. 10, pp. 8363-8370, Oct. 2020 (doi: 10.1109/TIE.2019.2947850).
[104] M.A.N. Kasiran, A. Ponniran, M.H. Yatim, J. Itoh, "Evaluation of high power density achievement of optimum 4-level capacitor-clamped DC–DC boost converter with passive lossless snubber circuit by using Pareto-Front method", IET Power Electronics, vol. 13, no. 1, pp. 40-49, 7 1 2020 (doi: 10.1049/iet-pel.2019.0604).
[105] T. Kjellqvist, S. Ostlund, S. Norrga, "Active snubber circuit for source commutated converters utilizing the IGBT in the linear region", IEEE Trans. on Power Electronics, vol. 23, no. 5, pp. 2595-2601, Sept. 2008 (doi: 10.1109/TPEL.2008.2002093).
[106] H. Bodur, E. Akboy, H. Yeşilyurt, "A new and modular active snubber cell for inverters", IEEE Trans. on Industrial Electronics, vol. 67, no. 1, pp. 288-296, Jan. 2020 (doi: 10.1109/TIE.2019.2896126).
[107] N.D. Dao, D. Lee, "Passive soft-switching circuit for high power density SiC-based dc-dc boost converter", Proceeding of the IEEE/APEC, pp. 2136-2141, New Orleans, LA, USA, March 2020 (doi: 10.1109/APEC39645.2020.9124491).
[108] G. Yao, A. Chen, X. He, "Soft switching circuit for interleaved boost converters", IEEE Trans. on Power Electronics, vol. 22, no. 1, pp. 80-86, Jan. 2007 (doi: 10.1109/TPEL.2006.886649).
[109] H. Lee, J. Yun, "Quasi-resonant voltage doubler with snubber capacitor for boost half-bridge dc–dc converter in photovoltaic micro-inverter", IEEE Trans. on Power Electronics, vol. 34, no. 9, pp. 8377-8388, Sept. 2019 (doi: 10.1109/TPEL.2018.2883535).
[110] T. Isobe, K. Kato, N. Kojima, R. Shimada, "Soft-switching single-phase grid-connecting converter using dcm operation and a turn-off snubber capacitor", IEEE Trans. on Power Electronics, vol. 29, no. 6, pp. 2922-2930, June 2014 (doi: 10.1109/TPEL.2013.2274390).
[111] M.R. Ahmed, G. Calderon-Lopez, F. Bryan, R. Todd, A.J. Forsyth, "Soft-switching SiC interleaved boost converter", Proceeding of the IEEE/APEC, pp. 941-947, Charlotte, NC, USA, Marcah 2015 (doi: 10.1109/APEC.2015.7104462).
[112] T. Ching-Jung, C. Chern-Lin, "Novel ZVT-PWM converters with active snubbers", IEEE Trans. on Power Electronics, vol. 13, no. 5, pp. 861-869, Sept 1998, (doi: 10.1109/63.712292).
[113] H. Bodur, A. F. Bakan, "A new ZVT-PWM DC-DC converter", IEEE Trans. on Power Electronics, vol. 17, no. 1, pp. 40-47, Jan. 2002, (doi: 10.1109/63.988668).
[114] A.F. Bakan, H. Bodur, I. Askoy, "A novel ZVT-ZCT PWM DC-DC converter", Proceeding of the IEEE/EPE, pp. 1-8, Dresden, Germany, Aug. 2006 (doi: 10.1109/EPE.2005.219462).
[115] H. Bodur, A. F. Bakan, "A new ZVT-ZCT-PWM DC-DC converter", IEEE Trans. on Power Electronics, vol. 19, no. 3, pp. 676-684, March 2004 (doi: 10.1109/TPEL.2004.826490).
[116] L.H.S.C. Barreto, A.A. Pereira, V.J. Farias, L.C. Freitas, J.B. Vieira, "A boost converter associated with a new nondissipative snubber", Proceeding of the IEEE/APEC, vol. 2, pp. 1077-1083, Anaheim, CA, USA, Feb. 1998 (doi: 10.1109/APEC.1998.654031).
[117] T. Wu, Y. Chang, C. Chang, J. Yang, "Soft-switching boost converter with a flyback snubber for high power applications", IEEE Trans. on Power Electronics, vol. 27, no. 3, pp. 1108-1119, Mar. 2012 (doi: 10.1109/TPEL.2011.2126024).
[118] M. M. Jovanovic, "A technique for reducing rectifier reverse-recovery-related losses in high-power boost converters", IEEE Trans. on Power Electronics, vol. 13, no. 5, pp. 932-941, Sept. 1998 (doi: 10.1109/63.712314).
[119] M. M. Jovanovic, Y. Jang, "A new, soft-switched boost converter with isolated active snubber", Proceeding of the IEEE/APEC, vol.2, pp. 1084-1090, Anaheim, CA, USA, Feb. 2002 (doi: 10.1109/APEC.1998.654032).
[120] S.R.B. Shah, S.M. Tadvin, M.R.T. Hossain, "A brief review of active snubber circuits for boost converter", Proceeding of the IEEE/I2CT, pp. 1-6, Pune, India, April 2018 (doi: 10.1109/I2CT.2018.8529668).
[121] N.S. Ting, I. Aksoy, Y. Sahin, "A new zero-voltage-transition PWM dc-dc boost converter", Proceeding of the IEEE/ACEMP, pp. 257-262, Side, Turkey, Sept. 2015 (doi: 10.1109/OPTIM.2015.7427027).
[122] S. Tandon, A.K. Rathore, B.L. Narasimharaju, "A ZVS series resonant current-fed PWM controlled dc-dc converter", Proceeding of the IEEE/ITEC, pp. 320-325, Chicago, IL, USA, June 2020 (doi: 10.1109/ITEC48692.2020.9161531).
[123] R. Jagadeesh, N. Vishwanathan, S. Porpandiselvi, "An efficient parallel resonant converter for LED lighting", Proceeding of the IEEE/NPSC, pp. 1-5, Tiruchirappalli, India, Dec. 2019 (doi: 10.1109/NPSC.2018.8771439).
[124] L. Dong-Yun, L, Min-Kwang, H, Dong-Seok, I. Choy, "New zero-current-transition PWM dc-dc converters without current stress", IEEE Trans. on Power Electornics, vol. 18, no. 1, pp. 95-104, Jan. 2003 (doi: 10.1109/TPEL.2002.807206).
[125] E. Chu, J. Bao, H. Xie, G. Hui, "A zero-voltage and zero-current switching interleaved two-switch forward fonverter with passive auxiliary resonant circuit", IEEE Trans. on Power Electronics, vol. 35, no. 5, pp. 4859-4876, March 2020 (doi: 10.1109/TPEL.2019.2944890).
[126] T.T. Song, N. Huang. A. Ioinovici, "A zero-voltage and zero-current switching three-level dc-dc converter with reduced rectifier voltage stress and soft-switching-oriented optimized design", IEEE Trans. on Power Electronics, vol. 21, no. 5, pp. 1204-1212, Sept. 2006 (doi: 10.1109/TPEL.2006.880351).
[127] H.N. Tran, A.M. Naradhipa, S. Kim, A. Tausif, "A fully soft-switched PWM dc-dc converter using An active-snubber-cell", Proceeding of the IEEE/IPEC, pp. 3833-3839, Niigata, Asia, Oct. 2018 (doi: 10.23919/IPEC.2018.8507448).
[128] T.F. Wu, Y.D. Chang, C.H. Chang, H.X. Lee, "Boost converter with various passive/active snubbers for reducing component stress and achieving high efficiency", Proceeding of the IEEE/PEDS, Taipei, Taiwan, Nov. 2009 (doi: 10.1109/PEDS.2009.5385795).
[129] H. Yeşilyurt, H. Bodur, "New active snubber cell for high power isolated PWM dc-dc converters", IET Circuits, Devices and Systems, vol. 13, no. 6, pp. 822-829, Oct. 2019 (doi: 10.1049/iet-cds.2018.5531).
[130] H. Lei, R. Hao, X. You, F. Li, "Nonisolated high step-up soft-switching dc-dc converter with interleaving and dickson switched-capacitor techniques", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2007-2021, Sept. 2020 (doi: 10.1109/JESTPE.2019.2958316).
[131] T. Mishima, M. Nakaoka, "Performance evaluation on a fixed-frequency ZCS-PWM asymmetrical half-bridge dc-dc converter with auxiliary active edge-resonant snubber", Proceeding of the IEEE/PESC, pp. 2177-2183, Rhodes, Greece, June 2008 (doi: 10.1109/PESC.2008.4592265).