طراحی و پیاده سازی یک مبدل غیر ایزوله چند درگاهه با بهره ولتاژ بالا
محورهای موضوعی : انرژی های تجدیدپذیرمعین شهسواری 1 , سید محمد مهدی میرطلائی 2 *
1 - دانشکده مهندسی برق- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: مبدل سه درگاهه, مبدل بهره بالا, سیستم منبع انرژی ترکیبی,
چکیده مقاله :
امروزه آرایههایی خورشیدی، پیلهای سوختی و انرژی باد به عنوان منابع انرژی پاک بسیار مورد توجه قرار گرفتهاند. این منابع میتوانند انرژی خود را به شبکه برق و یا به طور مستقیم به مصرف کننده تحویل دهند. معمولا سطح ولتاژ تولیدی در این منابع، پایین و نیاز به افزایش سطح ولتاژ میباشد. برای حل این مشکل میتوان از مبدلهای بهره ولتاژ بالا به صورت یک درگاهه و چند درگاهه استفاده نمود. در مبدل پیشنهادی برای افزایش بهره ولتاژ، از مدار چند برابر کننده ولتاژ، سلفهای تزویج و خازن سوئیچ شده و همچنین برای رفع مشکل انرژی ذخیره شده در سلف نشتی، از مدار کلمپ استفاده میشود. یکی از ویژگیهای این مبدل به اشتراک گذاشتن اجزای مبدل در حالتهای مختلف میباشد این مهم برای کاهش تعداد عناصر نیمه هادی در ساخت مبدل به حساب میآید. در مبدل پیشنهادی انتقال توان میتواند از آرایه خورشیدی به بار و یا از آرایه خورشیدی به باتری و یا هر دو باشد. همچنین در لحظات پیک مصرف آرایه خورشیدی و باتری میتوانند توان بار را همزمان تامین کنند. در این مقاله برای بررسی نحوه عملکرد مبدلهای پیشنهادی از تحلیلهای نظری استفاده شده است و برای بررسی صحت تحلیلهای نظری نتایج شبیه سازی مبدل در نرم افزار ارکد ارائه شده است. سرانجام یک نمونهی آزمایشگاهی از مبدل پیشنهادی در توان 200 وات و فرکانس100 کیلوهرتز پیاده سازی گردیده است که نتایج بدست آمده صحت تحلیل تئوری و عملکرد مبدل پیشنهادی را نشان میدهد.
Today, solar arrays, fuel cells and wind energy are highly regarded as sources of clean energy. These sources can deliver their energy to the grid or directly to the consumer. Usually the voltage level produced in these sources is low and the need to increase the voltage level is. To solve this problem, high voltage gain converters can be used as single-port and multi-port. In the proposed converter to increase the voltage gain, the voltage multiplier circuit, the switched inductors and the switched capacitor are used, and also the clamp circuit is used to solve the problem of energy stored in the leakage inductor. One of the features of this converter is to share the components of the converter in different modes. This is important to reduce the number of semiconductor elements in the construction of the converter. In the proposed converter, the power transfer can be from solar array to load or from solar array to battery or both. Also, in peak moments, solar array and battery consumption can provide load power at the same time. In this paper, theoretical analysis has been used to evaluate the performance of the proposed converters and the results of the converter simulation in Orcad software have been presented to evaluate the accuracy of the theoretical analysis. Finally, a laboratory sample of the proposed converter with a power of 200 watts and a frequency of 100 kHz has been implemented,
[1] S.M.M. Mirtalaei, M. Mohtaj, H. Karami, “Design and implementation of a high step-up boost-sepic hybrid converter with soft switching”, Journal of Intelligent Procedures in Electrical Technology, vol. 6, no. 24, pp. 27-34, March 2016 (dor: 20.1001.1.23223871.1394.6.24.3.3).
[2] M. Zamani, G.H. Riahy, N. Abdolghani, M.H. Zamani, G. Shahgholian, "Utilization of thermal energy storage for reducing battery bank size of hybrid (wind-PV) systems", Proceeding of the IEEE/ICCEP, pp. 709-714, Ischia, Italy, June 2011 (doi: 10.1109/ICCEP.2011.6036358).
[3] Z. Rehman, I. Al-Bahadly, S. Mukhopadhyay, "Multiinput dc–dc converters in renewable energy applications– An overview", Renewable and Sustainable Energy Reviews, vol. 41, pp. 521-539, Jan. 2015 (doi: 10.1016/j.rser.2014.08.033).
[4] J. Faiz, G. Shahgholian, M. Ehsan, “Stability analysis and simulation of a single‐phase voltage source UPS inverter with two‐stage cascade output filter”, European Transactions on Electrical Power, vol. 18, no. 1, pp. 29-49, Jan. 2008 (doi: 10.1002/etep.160).
[5] N. Zhang, D. Sutanto, K.M. Muttaqi, "A review of topologies of three-port dc–dc converters for the integration of renewable energy and energy storage system", Renewable and Sustainable Energy Reviews, vol. 56, pp. 388-401, April 2016 (doi: 10.1016/j.rser.2015.11.079).
[6] Z. Saadatizadeh, E. Babaei, F. Blaabjerg, C. Cecati, "Three-port high step-up and high step-down dc-dc converter with zero input current ripple", IEEE Trans. on Power Electronics, vol. 36, no. 2, pp. 1804-1813, Feb. 2021 (doi: 10.1109/TPEL.2020.3007959).
[7] M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, B. Lehman, "Step-up dc-dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Trans. on Power Electronics, vol. 32, no. 12, pp. 9143-9178, 2017 (doi: 10.1109/TPEL.2017.2652318).
[8] M. Premkumar, C. Kumar, A. Anbarasan, R. Sowmya, "A novel non‑isolated high step‑up dc/dc boost converter using single switch for renewable energy systems", Electrical Engineering, vol. 102, pp. 811-829, 2020 (doi: 10.1007/s00202-019-00904-8).
[9] M.C. Mira, Z. Zhang, A. Knott, M.A.E. Andersen, “Analysis, design, modeling, and control of an interleaved-boost full-bridge three-port converter for hybrid renewable energy systems”, IEEE Trans. on Power Electronics, vol. 32, no. 2, pp. 1138–1155, Feb. 2017 (doi: 10.1109/TPEL.2016.2549015).
[10] H. Wu, K. Sun, R. Chen, H. Hu, Y. Xing, "Full-bridge three-port converters with wide input voltage range for renewable rower systems", IEEE Trans. on Power Electronics, vol. 27, no. 9, pp. 3965-3974, 2012 (doi: 10.1109/TPEL.2012.2188105).
[11] H. Wu, J. Zhang, X. Qin, T. Mu, Y. Xing, "Secondary-side-regulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface", IEEE Trans. on Power Electronics, vol. 31, pp. 4847-4860, 2016 (doi: 10.1109/TPEL.2015.2473002).
[12] Y. Zhao, W. Li, X. He, “Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell”, IEEE Trans. on Power Electronics, vol. 27, no. 6, pp. 2869-2878, June 2012 (doi: 10.1109/TPEL.2011.2176752).
[13] S. Khosrogorji, M. Ahmadian, H. Torkaman, S. Soori, “Multi-input dc/dc converters in connection with distributed generation units– a review”, Renewable and Sustainable Energy Reviews, vol. 66, pp. 360-379, 2016 (doi:10.1016/j.rser.2016.07.023).
[14] E. Babaei, O. Abbasi, “Structure for multi-input multi-output dc–dc boost converter”, IET Power Electronics, vol. 9, pp. 9-19, 2016 (doi:10.1049/iet-pel.2014.0985).
[15] L. Wang, Z. Wang, H. Li, “Asymmetrical duty cycle control and decoupled power flow design of a three-port bidirectional dc-dc converter for fuel cell vehicle application”, IEEE Trans. on Power Electronics, vol. 27, no. 2, pp. 891–904, 2012 (doi: 10.1109/TPEL.2011.2160405).
[16] C. Zhao, S.D. Round, J.W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management”, IEEE Trans. on Power Electronics, vol. 23, no. 5, pp. 2443–2453, 2008 (doi: 10.1109/TPEL.2008.2002056).
[17] H. Zhu, D. Zhang, B. Zhang, Z. Zhou, "Nonisolated three-port DCDC converter and three-domain control method for PV-battery power systems", IEEE Trans. on Industrial Electronics, vol. 62, no. 8, pp. 4937-4947, 2015 (doi: 10.1109/TIE.2015.2393831).
[18] H. Wu, Y. Jia, F. Yang, L. Zhu, Y. Xing, "Two-Stage isolated bidirectional dc–ac converters with three-port converters and two dc buses", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 4428-4439, Dec. 2020 (doi: 10.1109/JESTPE.2019.2936145).
[19] D. Gunasekaran, L. Umanand, “Integrated magnetics based multi-port bidirectional DC–DC converter topology for discontinuous-mode operation”, IET Power Electronics, vol. 5, no. 7, pp. 935–944, Jan. 2012 (doi: 10.1049/iet-pel.2011.0492).
[20] M. Soltani, S.M.M. Mirtalaei, "Design, simulation and implementation of a high step-up three level boost converter with coupled-inductor and passive clamp", Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 32, pp. 3-12, June 2017 (dor: 20.1001.1.23223871.1396.8.32.1.1).
[21] H. Nagata, M. Uno, "Nonisolated PWM three-port converter realizing reduced circuit volume for satellite electrical power systems", IEEE Trans. on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 3394-3408, Oct. 2020 (doi: 10.1109/TAES.2020.2971287).
[22] H. Wu, L. Zhu, F. Yang, "Three-port-converter-based single-phase bidirectional ac–dc converter with reduced power processing stages and improved overall efficiency", IEEE Trans. on Power Electronics, vol. 33, no. 12, pp. 10021-10026, Dec. 2018 (doi: 10.1109/TPEL.2018.2824242).
[23] S.M.M. Mirtalaei, R. Amani-Nafchi, "Boost high step-up dc/dc converter with coupled inductors and diode-capacitor technique", Journal of Intelligent Procedures in Electrical Technology, vol 10, no. 39, pp. 3-12, Dec. 2019 (dor: 20.1001.1.23223871.1398.10.39.1.9).
[24] Y.P. Yang, J.F. Hsieh, T.J. Chenm L.S. Liang, “Analysis and implementation of a novel single- switch high step-up DC-DC converter”, IET Power Electron Received, vol. 5, no. 1, pp.11-21, Jan. 2012 (doi: 10.1049/iet-pel.2010.0279).
[25] A. Pressman, Switching power supply design: McGraw-Hill, Inc., 1997.
[26] J. Zhang, J.S. Lai, R.Y. Kim, W. Yu, “High-power density design of a soft-switching high-power bidirectional dc–dc converter”, IEEE Trans. on Power Electronics, vol. 22, pp. 1145-1153, 2007 (doi: 10.1109/TPEL.2007.900462).
[27] M. R. Mohammadi, H. Farzanehfard, "A new family of zerovoltage-transition nonisolated bidirectional converters with simple auxiliary circuit", IEEE Trans. on Industrial Electronics, vol. 63, pp. 1519-1527, 2016 (doi: 10.1109/TIE.2015.2498907).
[28] F. Kardan, R. Alizadeh, M.R. Banaei “A new three input DC/DC converter for hybrid PV/FC/battery applications”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.5, no.4, 2017 (doi: 10.1109/JESTPE.2017.2731816).
[29] S. Salehi Dobakhshari, S.H. Fathi, J. Milimonfared, “A new soft-switched three-port DC/DC converter with high voltage gain and reduced number of semiconductors for hybrid energy applications”, IEEE Trans. on Power Electronics, vol. 35, no. 4, 2019 (doi:10.1109/TPEL.2019.2933182).
[30] R. Faraji, H. Farzanehfard, “Soft-switched non-isolated high step-up three-port dc-dc converter for hybrid energy systems”, IEEE Trans. on Power Electronics, vol. 33, no. 12, 2018 (doi: 10.1109/TPEL.2018.2791840).
_||_[1] S.M.M. Mirtalaei, M. Mohtaj, H. Karami, “Design and implementation of a high step-up boost-sepic hybrid converter with soft switching”, Journal of Intelligent Procedures in Electrical Technology, vol. 6, no. 24, pp. 27-34, March 2016 (dor: 20.1001.1.23223871.1394.6.24.3.3).
[2] M. Zamani, G.H. Riahy, N. Abdolghani, M.H. Zamani, G. Shahgholian, "Utilization of thermal energy storage for reducing battery bank size of hybrid (wind-PV) systems", Proceeding of the IEEE/ICCEP, pp. 709-714, Ischia, Italy, June 2011 (doi: 10.1109/ICCEP.2011.6036358).
[3] Z. Rehman, I. Al-Bahadly, S. Mukhopadhyay, "Multiinput dc–dc converters in renewable energy applications– An overview", Renewable and Sustainable Energy Reviews, vol. 41, pp. 521-539, Jan. 2015 (doi: 10.1016/j.rser.2014.08.033).
[4] J. Faiz, G. Shahgholian, M. Ehsan, “Stability analysis and simulation of a single‐phase voltage source UPS inverter with two‐stage cascade output filter”, European Transactions on Electrical Power, vol. 18, no. 1, pp. 29-49, Jan. 2008 (doi: 10.1002/etep.160).
[5] N. Zhang, D. Sutanto, K.M. Muttaqi, "A review of topologies of three-port dc–dc converters for the integration of renewable energy and energy storage system", Renewable and Sustainable Energy Reviews, vol. 56, pp. 388-401, April 2016 (doi: 10.1016/j.rser.2015.11.079).
[6] Z. Saadatizadeh, E. Babaei, F. Blaabjerg, C. Cecati, "Three-port high step-up and high step-down dc-dc converter with zero input current ripple", IEEE Trans. on Power Electronics, vol. 36, no. 2, pp. 1804-1813, Feb. 2021 (doi: 10.1109/TPEL.2020.3007959).
[7] M. Forouzesh, Y.P. Siwakoti, S.A. Gorji, F. Blaabjerg, B. Lehman, "Step-up dc-dc converters: A comprehensive review of voltage-boosting techniques, topologies, and applications", IEEE Trans. on Power Electronics, vol. 32, no. 12, pp. 9143-9178, 2017 (doi: 10.1109/TPEL.2017.2652318).
[8] M. Premkumar, C. Kumar, A. Anbarasan, R. Sowmya, "A novel non‑isolated high step‑up dc/dc boost converter using single switch for renewable energy systems", Electrical Engineering, vol. 102, pp. 811-829, 2020 (doi: 10.1007/s00202-019-00904-8).
[9] M.C. Mira, Z. Zhang, A. Knott, M.A.E. Andersen, “Analysis, design, modeling, and control of an interleaved-boost full-bridge three-port converter for hybrid renewable energy systems”, IEEE Trans. on Power Electronics, vol. 32, no. 2, pp. 1138–1155, Feb. 2017 (doi: 10.1109/TPEL.2016.2549015).
[10] H. Wu, K. Sun, R. Chen, H. Hu, Y. Xing, "Full-bridge three-port converters with wide input voltage range for renewable rower systems", IEEE Trans. on Power Electronics, vol. 27, no. 9, pp. 3965-3974, 2012 (doi: 10.1109/TPEL.2012.2188105).
[11] H. Wu, J. Zhang, X. Qin, T. Mu, Y. Xing, "Secondary-side-regulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface", IEEE Trans. on Power Electronics, vol. 31, pp. 4847-4860, 2016 (doi: 10.1109/TPEL.2015.2473002).
[12] Y. Zhao, W. Li, X. He, “Single-phase improved active clamp coupled-inductor-based converter with extended voltage doubler cell”, IEEE Trans. on Power Electronics, vol. 27, no. 6, pp. 2869-2878, June 2012 (doi: 10.1109/TPEL.2011.2176752).
[13] S. Khosrogorji, M. Ahmadian, H. Torkaman, S. Soori, “Multi-input dc/dc converters in connection with distributed generation units– a review”, Renewable and Sustainable Energy Reviews, vol. 66, pp. 360-379, 2016 (doi:10.1016/j.rser.2016.07.023).
[14] E. Babaei, O. Abbasi, “Structure for multi-input multi-output dc–dc boost converter”, IET Power Electronics, vol. 9, pp. 9-19, 2016 (doi:10.1049/iet-pel.2014.0985).
[15] L. Wang, Z. Wang, H. Li, “Asymmetrical duty cycle control and decoupled power flow design of a three-port bidirectional dc-dc converter for fuel cell vehicle application”, IEEE Trans. on Power Electronics, vol. 27, no. 2, pp. 891–904, 2012 (doi: 10.1109/TPEL.2011.2160405).
[16] C. Zhao, S.D. Round, J.W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management”, IEEE Trans. on Power Electronics, vol. 23, no. 5, pp. 2443–2453, 2008 (doi: 10.1109/TPEL.2008.2002056).
[17] H. Zhu, D. Zhang, B. Zhang, Z. Zhou, "Nonisolated three-port DCDC converter and three-domain control method for PV-battery power systems", IEEE Trans. on Industrial Electronics, vol. 62, no. 8, pp. 4937-4947, 2015 (doi: 10.1109/TIE.2015.2393831).
[18] H. Wu, Y. Jia, F. Yang, L. Zhu, Y. Xing, "Two-Stage isolated bidirectional dc–ac converters with three-port converters and two dc buses", IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 4428-4439, Dec. 2020 (doi: 10.1109/JESTPE.2019.2936145).
[19] D. Gunasekaran, L. Umanand, “Integrated magnetics based multi-port bidirectional DC–DC converter topology for discontinuous-mode operation”, IET Power Electronics, vol. 5, no. 7, pp. 935–944, Jan. 2012 (doi: 10.1049/iet-pel.2011.0492).
[20] M. Soltani, S.M.M. Mirtalaei, "Design, simulation and implementation of a high step-up three level boost converter with coupled-inductor and passive clamp", Journal of Intelligent Procedures in Electrical Technology, vol. 8, no. 32, pp. 3-12, June 2017 (dor: 20.1001.1.23223871.1396.8.32.1.1).
[21] H. Nagata, M. Uno, "Nonisolated PWM three-port converter realizing reduced circuit volume for satellite electrical power systems", IEEE Trans. on Aerospace and Electronic Systems, vol. 56, no. 5, pp. 3394-3408, Oct. 2020 (doi: 10.1109/TAES.2020.2971287).
[22] H. Wu, L. Zhu, F. Yang, "Three-port-converter-based single-phase bidirectional ac–dc converter with reduced power processing stages and improved overall efficiency", IEEE Trans. on Power Electronics, vol. 33, no. 12, pp. 10021-10026, Dec. 2018 (doi: 10.1109/TPEL.2018.2824242).
[23] S.M.M. Mirtalaei, R. Amani-Nafchi, "Boost high step-up dc/dc converter with coupled inductors and diode-capacitor technique", Journal of Intelligent Procedures in Electrical Technology, vol 10, no. 39, pp. 3-12, Dec. 2019 (dor: 20.1001.1.23223871.1398.10.39.1.9).
[24] Y.P. Yang, J.F. Hsieh, T.J. Chenm L.S. Liang, “Analysis and implementation of a novel single- switch high step-up DC-DC converter”, IET Power Electron Received, vol. 5, no. 1, pp.11-21, Jan. 2012 (doi: 10.1049/iet-pel.2010.0279).
[25] A. Pressman, Switching power supply design: McGraw-Hill, Inc., 1997.
[26] J. Zhang, J.S. Lai, R.Y. Kim, W. Yu, “High-power density design of a soft-switching high-power bidirectional dc–dc converter”, IEEE Trans. on Power Electronics, vol. 22, pp. 1145-1153, 2007 (doi: 10.1109/TPEL.2007.900462).
[27] M. R. Mohammadi, H. Farzanehfard, "A new family of zerovoltage-transition nonisolated bidirectional converters with simple auxiliary circuit", IEEE Trans. on Industrial Electronics, vol. 63, pp. 1519-1527, 2016 (doi: 10.1109/TIE.2015.2498907).
[28] F. Kardan, R. Alizadeh, M.R. Banaei “A new three input DC/DC converter for hybrid PV/FC/battery applications”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.5, no.4, 2017 (doi: 10.1109/JESTPE.2017.2731816).
[29] S. Salehi Dobakhshari, S.H. Fathi, J. Milimonfared, “A new soft-switched three-port DC/DC converter with high voltage gain and reduced number of semiconductors for hybrid energy applications”, IEEE Trans. on Power Electronics, vol. 35, no. 4, 2019 (doi:10.1109/TPEL.2019.2933182).
[30] R. Faraji, H. Farzanehfard, “Soft-switched non-isolated high step-up three-port dc-dc converter for hybrid energy systems”, IEEE Trans. on Power Electronics, vol. 33, no. 12, 2018 (doi: 10.1109/TPEL.2018.2791840).