تشخیص تومورهای مغزی از تصاویر تشدید مغناطیسی با تلفیق روشهای سوپرپیکسل و طبقهبندی ماشین بردار رابط
محورهای موضوعی : انرژی های تجدیدپذیرابراهیم اکبری 1 , مهران عمادی 2 *
1 - کارشناس ارشد - مهندسی برق الکترونیک، واحد مبارکه، دانشگاه آزاد اسلامی، مبارکه، ایران
2 - استادیار-گروه برق، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد مبارکه، مبارکه ، اصفهان، ایران
کلید واژه: تصویربرداری تشدید مغناطیسی, تقسیمبندی سوپر پیکسل, طبقهبندی ماشین بردار رابط,
چکیده مقاله :
تولید سلولهای اضافی اغلب تشکیل تودهای از بافت را میدهند که به آن تومور اطلاق میشود. تومورها میتوانند عملکرد صحیح مغز را مختل کنند و حتی منجر به مرگ بیمار گردند. یکی از راههای تشخیصی غیرتهاجمی برای این بیماری تصویربرداری تشدید مغناطیسی (MRI) میباشد. توسعهی یک سیستم تشخیصی اتوماتیک یا نیمهاتوماتیک به کمک کامپیوتر در درمانهای پزشکی مورد نیاز است. الگوریتمهای متعددی برای تشخیص تومور بکار گرفته شده است که هرکدام دارای مزایا و معایب خاص خودش است. در این پژوهش، از تلفیق روشهای تقسیمبندی سوپرپیکسل و طبقهبندی RVM، یک روش اتوماتیک برای پیدا کردن محدوده دقیق ناحیه تومور در تصویر MRI ابداع نموده است. الگوریتم مورداستفاده در روش سوپرپیکسل، الگوریتم SLIC است که برای هر سوپرپیکسل 13 ویژگی آماری و شدت روشنائی، محاسبه شده و در نهایت توسط الگوریتم طبقهبندی RVM روشی آموزش داده میشود که بتواند در هر تصویر MRI مغز، قسمت تومور را از غیرتومور تشخیص دهد.در این تحقیق از مجموعه داده BRATS2012 و از تصاویر با وزن FLAIR استفاده شده است و نتایج بدست آمده با نتایج BRATS2012 مقایسه گردیده است و ضرایب همپوشانی Dice، BF score و Jaccard به ترتیب 0.898 ، 0.697 و 0.754 بدست آمده است.
The production of additional cells often forms a mass of tissue that is referred to as a tumor. Tumors can disrupt the proper functioning of the brain and even lead to the patients' death. One of the non-invasive diagnostic methods for this disease is Magnetic Resonance Imaging (MRI). The development of an automated or semi-automatic diagnostic system is required by the computer in medical treatments. Several algorithms have been used to detect a tumor, each with its own advantages and disadvantages. In the present study, an automatic method has been developed by the combination of new methods in order to find the exact area of the tumor in the MRI image. This algorithm is based on super pixel and RVM classification. The algorithm used in the super pixel method is the SLIC algorithm, which calculates for each super pixel 13 statistical characteristics and severity. Finally, an educational method introduced from the RVM classification algorithm that can detect the tumor portion from non-tumor in each brain MRI image. BRATS2012 dataset and FLAIR weights have been utilized in this study The results are compared with the results of the BRATS2012 data and The overlap coefficients of Dice, BF score, and Jaccard were 0.898, 0.697 and 0.754, respectively.
[1] L. Vincent, P. Soille, "Watersheds in digital spaces: an efficient algorithm based on immersion simulations", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No. 16, pp. 583-598, June 1991.
[2] A. Kharrat, N. Benamrane, M.B. Messaoud, M. Abid, "Detection of brain tumor in medical images", Proceeding of the IEEE/SCS, ,pp. 1-6, Medenine, Tunisia, Nov. 2009.
[3] K. Sheikh, V. Sutar, S. Thigale, "Clustering based segmentation approach to detect brain tumor from MRI scan", International Journal of Computer Applications, Vol. 118, No. 8, pp. 36-39, May 2015.
[4] S. Shen, "MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization", IEEE Trans. on Information Technology in Biomedicine, Vol. 9,No. 3, pp. 459-467, Sept. 2005.
[5] J. Selvakumar, A. Lakshmi, "Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and Fuzzy C-mean algorithm", Proceeding of the IEEE/ICAESM, pp. 186-190, 30-31 March 2012.
[6] A. Hussain, M. Ansari, S. Gawas, "Lung cancer detection using artificial neural network &fuzzy clustering", International journal of advanced research in computer and communication engineering, Vol. 4, No. 3, March 2015.
[7] V. Rajesh, "Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and fuzzy C-mean algorithm", Fuzzy Systems, Vol. 7, No. 3, pp. 103-107, 2015.
[8] Y. Sharma, p. Kaur, "Detection and extraction of brain tumor from MRI images using k-Means clustering and watershed algorithms", International Journal of Computer Science Trends and Technology, Vol. 3, No. 2, pp. 8-32, 2015.
[9] G. Praveen, A. Agrawal, "Hybrid approach for brain tumor detection and classification in magnetic resonance images", Proceeding of the IEEE/CCIS, pp. 162-168, Mathura, India, Nov. 2015.
[10] S. Ji, "A new multistage medical segmentation method based on superpixel and fuzzy clustering", Computational and Mathematical Methods in Medicine, Vol. 2014, pp. 1-13, March 2014.
[11] M. Soltaninejad, G. Yang, "Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI", International Journal of Computer Assisted Radiology and Surgery, Vol. 12, No. 2, pp. 183-203, 2017.
[12] N. Gupta, P. Khanna, "A fast and efficient computer aided diagnostic system to detect tumor from brain magnetic resonance imaging", International Journal of Imaging Systems and Technology, Vol. 25, No. 2, pp. 123-130, 1 Jan. 2015.
[13] P. Sangamithraa, S. Govindaraju, "Lung tumour detection and classification using EK-Mean clustering", Proceeding of the IEEE/WiSPNET, pp. 2201-2206, 23-25, Chennai, India, March 2016.
[14] BRATS, "The virtual skeleton database project", [Online]. Available: https://www.smir.ch/BRATS/Start2012. [Accessed 2 1 2018].
[15] D.L Pham, C. Xu, J.L Prince, "A survey of current methods in medical image segmentation", Annual Review of Biomedical Engineering, Vol. 2, pp. 315-337, Aug. 2000.
[16] B.H Menze, A Jakab, S Bauer, "The multimodal brain tumor image segmentation benchmark (BRATS)", IEEE Trans. on Medical Imaging, Vol. 34, No. 10, pp. 1993-2024, Oct. 2015.
[17] A. Islam, S.M.S. Reza, K.M. Iftekharuddin, "Multifractal texture estimation for detection and segmentation of brain tumors", IEEE Trans. on Biomedical Engineering, Vol. 60, No. 11, pp. 3204-3215, Nov. 2013.
[18] Nicholas J. Tustison, K. L. Shrinidhi, Max Wintermark, Brian B. Avants, "Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation", Neuroinform, Vol. 13, No. 2, pp. 209-225, April 2015.
_||_