ارایه سیستم معاملات الگوریتمی برای قرارداد آتی سکه طلا مبتنی بر دادههای درون-روزی
محورهای موضوعی : دانش سرمایهگذاریمحمد علی رستگار 1 , امین صداقتیپور 2
1 - استادیار گروه مهندسی مالی، دانشکده مهندسی صنایع و سیستمها، دانشگاه تربیت مدرس (نویسنده مسئول)
2 - کارشناسیارشد مهندسی مالی، دانشکده مهندسی صنایع و سیستمها، دانشگاه تربیت مدرس
کلید واژه: معاملات الگوریتمی, قرارداد آتی سکه طلا, تحلیل تکنیکال, ارزش در معرض خطر شرطی,
چکیده مقاله :
امروزه با فراگیر شدن معاملات آنلاین و الگوریتمی، نیاز است تا دادههای معاملاتی بازارهای مالی با سرعت بالاتری تحلیل و به تصمیمی سودآور تبدیل شوند. هدف این مقاله توسعه یک سیستم معاملات خودکار و الگوریتمی بر روی قرارداد آتی سکه طلای بورس کالای ایران است. با توجه به این که تحلیل تکنیکال برای بازارهای دو طرفه (موقعیت خرید و فروش) مناسب است، از سیگنال 8 ابزار تکنیکال برای سیستم معاملاتی استفاده شده است. به منظور ایجاد سیستم معاملاتی نیز از الگوریتم MOPSO با هدف بهینهسازی دو تابع بازدهی و ارزش در معرض خطر شرطی (CVaR) بهره گرفتهایم. همچنین برای تکمیل سیستم مدیریت ریسک، حد سود و حد ضرر بهینه برای قرارداد آتی تعیین شده است. نتایج نشان میدهد که سیستم معاملاتی طراحی شده نسبت بازدهی به ریسک مطلوبتری نسبت به دیگر استراتژیهای رقیب مانند خرید و نگهداری و فروش و نگهداری دارد. همچنین چارچوب زمانی 30 دقیقه برای طراحی سیستمهای معاملاتی بر روی قرارداد آتی سکه طلا مناسب به نظر میرسد.
Today, with the prevalence of online trading and algorithmic trading, it is required that the trading data of financial markets be analyzed faster and become profitable decision. The purpose of this paper is to develop an automated and algorithmic trading system on gold coin future contracts in Iran Mercantile Exchange. According to the suitableness of technical analysis for two-sided markets (long and short position), 8 technical tool signals has been used for trading system. In order to develop the trading system, MOPSO algorithm is used with the aim of optimizing the efficiency function and Conditional Value at Risk (CVaR). Besides for completing the risk management system, optimized take profit and stop loss has been specified for future contract. The results show that the designed trading system has a more favorable ratio of return to risk than other competitor strategies such as buy & hold and sell & hold. Also the time frame of 30 minutes seems appropriate for designing a trading system based on gold futures contract.
* راعی, ر., هنردوست, ا., سلیمانی, ی.؛ تاتایی, پ., 1393. اثر سررسید، حجم معامله و تعداد موقعیتهای باز بر نوسانات قیمت قرارداد آتی سکه طلا. دانش سرمایهگذاری, 1(9), pp. 169-186.
* عباسی, ا., عاکفی, ح.؛ ادیب مهر, ش. ا., 1394. تنظیم پارامتر اندیکاتور های تحلیل تکنیکال با استفاده از بهینه سازی چندهدفه گروه ذرات و سیستم استنتاج تطبیقی فازی عصبی. فصلنامه علمی پژوهشی دانش سرمایه گذاری, pp. 111-134.
* فلاح پور, س.؛ حکیمیان, ح. , 1395. بررسی عملکرد سیستم معاملات زوجی در بورس اوراق بهادار تهران: رویکرد هم انباشتگی و بررسی نسبت سورتینو. مهندسی مالی و مدیریت اوراق بهادار, 8(30), pp.1-17.
* فکاری سردهایی, ب., میرزاپور, ا., صیامی, ع.؛ کجوری, م., 1392. بررسی ارتباط قیمت بازار آتی و نقدی سکه طلای ایران. دانش مالی تحلیل اوراق بهادار, 7(22), pp.93-107.
* علی احمدی, س.؛ احمدلو, م. ,1390. پیش بینی قیمت قراردادهای آتی سکه طلا با استفاده از مدل آریما در بورس کالای ایران. مجله دانش مالی تحلیل اوراق بهادار, 5(9) , pp.61-74.
* دستپاک, م.؛ 1394. ارائه مدل معاملاتی با تکرار بالا در بورس اوراق بهادار تهران. فصلنامه علمی پژوهشی دانش سرمایه گذاری, 4(16) , . pp. 89-109
* Babaei, S., Sepehri, M.M. and Babaei, E., 2015. Multi-objective portfolio optimization considering the dependence structure of asset returns. European Journal of Operational Research, 244(2), pp.525-539.
* Chen, Y. and Wang, X., 2015. A hybrid stock trading system using genetic network programming and mean conditional value-at-risk. European Journal of Operational Research, 240(3), pp.861-871.
* de la Fuente, D., Garrido, A., Laviada, J. and Gómez, A., 2006, July. Genetic algorithms to optimise the time to make stock market investment. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (pp. 1857-1858). ACM.
* Esfahanipour, A. and Mousavi, S., 2011. A genetic programming model to generate risk-adjusted technical trading rules in stock markets. Expert Systems with Applications, 38(7), pp.8438-8445.
* Fernández Rodríguez, F., González-Martel, C. and Sosvilla Rivero, S., 2001. Optimisation of technical rules by genetic algorithms: Evidence from the madrid stock market.
* Fukumoto, R. and Kita, H., 2001, October. Designing trading agents for an artificial market with a multi-objective genetic algorithm. In Proceedings of the Fourth International Conference on Computational Intelligence and Multimedia Applications (p. 226). IEEE Computer Society.
* Lin, L., Cao, L., Wang, J. and Zhang, C., 2004. The applications of genetic algorithms in stock market data mining optimization. WIT Transactions on Information and Communication Technologies, 33.
* Liu, X., An, H., Wang, L. and Jia, X., 2017. An integrated approach to optimize moving average rules in the EUA futures market based on particle swarm optimization and genetic algorithms. Applied Energy, 185, pp.1778-1787.
* Lubnau, T. and Todorova, N., 2015. Trading on mean-reversion in energy futures markets. Energy Economics, 51, pp.312-319.
* Lwin, K.T., Qu, R. and MacCarthy, B.L., 2017. Mean-VaR Portfolio Optimization: A Nonparametric Approach. European Journal of Operational Research.
* Majhi, B. and Anish, C.M., 2015. Multiobjective optimization based adaptive models with fuzzy decision making for stock market forecasting. Neurocomputing, 167, pp.502-511.
* Ng, W.W., Liang, X.L., Li, J., Yeung, D.S. and Chan, P.P., 2014. LG-Trader: Stock trading decision support based on feature selection by weighted localized generalization error model. Neurocomputing, 146, pp.104-112.
* Skabar, A. and Cloete, I., 2002. Neural networks, financial trading and the efficient markets hypothesis. Australian Computer Science Communications, 24(1), pp.241-249.
* Vajda, V., 2014. Could a Trader Using Only “Old” Technical Indicator be Successful at the Forex Market?. Procedia Economics and Finance, 15, pp.318-325.
* Wang, L., An, H., Liu, X. and Huang, X., 2016. Selecting dynamic moving average trading rules in the crude oil futures market using a genetic approach. Applied Energy, 162, pp.1608-1618.
* Wiles, P.S. and Enke, D., 2015. Optimizing MACD parameters via genetic algorithms for soybean futures. Procedia Computer Science, 61, pp.85-91.
* Xu, Q., Zhou, Y., Jiang, C., Yu, K. and Niu, X., 2016. A large CVaR-based portfolio selection model with weight constraints. Economic Modelling, 59, pp.436-447.
* Zhu, H., Wang, Y., Wang, K. and Chen, Y., 2011. Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem. Expert Systems with Applications, 38(8), pp.10161-10169.
_||_