تأثیر عوامل اقتصاد کلان و رویدادهای شرکتی بر شاخص ریسک سیستماتیک براساس رویکرد بتای پرشی
محورهای موضوعی : دانش سرمایهگذاریعلی عسکری نژاد امیری 1 , محمد اسماعیل فدایی نژاد 2 , غلامحسین اسدی 3
1 - دانشجوی دکتری مالی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران (نویسنده مسئول)
2 - دانشیار مدیریت مالی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران
3 - دانشیار مدیریت مالی، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران
کلید واژه: ریسک سیستماتیک, بتای پرشی, داده&, shy, های پرفراوانی, رویداد پژوهی, مدل قیمتگذاری,
چکیده مقاله :
در این تحقیق بتای پرشی و بتای پیوسته به عنوان دو شاخص برای ریسک سیستماتیک بنگاه ها در نظر گرفته شدند و تأثیر عوامل اقتصادکلان و نیز رویداد های شرکتی بر شاخص های ریسک سیستماتیک بررسی شد. در نتیجه مشخص شد که تأثیرگذاری عوامل اقتصادکلان بر تغییرات بتای پیوسته بیشتر از تأثیرگذاری بر بتای پرشی است. درحالیکه نرخ تورم تأثیر محسوسی بر تغییرات بتای پرشی و پیوسته ندارد، افزایش نرخ رشد باعث افزایش هر دو نوع بتا شده و افزایش نرخ ارز موجب کاهش هر دو نوع بتا می شود. این کاهش در بتای پرشی تقریباً چهار برابر بتای پیوسته است. در نتیجه بررسی رویدادهای شرکتی مشاهده شد که دو یا سه هفته قبل از تصویب افزایش سرمایه، کاهش قابل ملاحظه ای در بتای پرشی ایجاد شده و یک هفته قبل از افزایش سرمایه افزایش محسوسی در بتای پیوسته روی می دهد. همچنین دریافتیم که اخبار مربوط به تعدیل مثبت زودتر از اخبار تعدیل منفی به بازار می رسد. اعلان سود به صورت تعدیل مثبت موجب اندکی افزایش در بتای پیوسته در هفته سوم یا چهارم قبل از رویداد شده و تعدیل منفی موجب کاهش قابل ملاحظه در بتای پیوسته حول زمان رویداد می شود. این درحالی است که اعلان سود تأثیر محسوسی بر بتای پرشی نمی گذارد.
We suppose jump beta and continuous beta as two indexes of systematic risk, then studying macroeconomics variables and corporate events effects on them. The results shows that macroeconomics variables effect on continuous beta is greater than its effect on jump beta. While inflation rate has no sensible effect on both betas, growth rate increase causes increase in both and exchange rate increase causes decrease in both betas. The decrease is for times greater in jump beta. According to event study, two or three weeks before capital increase, considerable decrease in jump beta and a week before capital increase, sensible increase in continuous beta are seen. As observed about profit announcement event, news of positive adjustments reach sooner to market than negative adjustments. Positive adjustment cause a little increase in continuous beta, three or four weeks before event and negative adjustment cause considerable decrease in continuous beta around event, while profit announcement has no effect on jump beta.
* شاه آبادی، ا.، نظیری، م. و حواج، س. (1391). بررسی اثر متغیرهای اقتصاد کلان بر ریسک سیستماتیک صنایع خودروسازی ، سیمان، دارویی و غذایی. فصلنامه تحقیقات توسعه اقتصادی، 7، 69-88.
* شاه آبادی، ا.، نظیری، م.، و حواج، س. (1392). اثر متغیرهای کلان اقتصادی بر ریسک سیستماتیک بورس اوراق بهادار تهران. فصلنامه پژوهشها و سیاستهای اقتصادی، 21(67)، 89 - 104.
* رحمانی، ع.، پیکارجو، ک.، و عزیزی، م. (1393). رابطه بتای بازار سهام با متغیرهای کلان اقتصادی و اطلاعات حسابداری. فصلنامه دانش سرمایهگذاری، 3(10)، 66-47.
* ستایش، م.، گل محمدی، م.، و قربانی، ا. (1390). سودمندی متغیرهای کلان اقتصادی در پیش بینی ریسک شرکتها. پژوهش های تجربی حسابداری، 123-144.
* صادقی شریف، س. ج. ، و عسکری نژاد امیری، ع. (1395). کارایی بازار. راهبرد توسعه، 47(پاییز)، 71-42.
* Abell, J. D., & Krueger, T. M. (1989). Macroeconomic influences on beta. Journal of Economics and Business, 41(2), 185-193.
* Aït-Sahalia, Y., & Jacod, J. (2009). Testing for jumps in a discretely observed process. The Annals of Statistics, 184-222.
* Aït-Sahalia, Y., & Jacod, J. (2012). Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data. Journal of Economic Literature, 50(4), 1007-1050.
* Alexeev, V., Dungey, M., & Yao, W. (2017). Time-varying continuous and jump betas: The role of firm characteristics and periods of stress. Journal of Empirical Finance, 40, 1-19.
* Amiri, A. A., & FadaeiNejad, M. E. (2017). Time-varying modelling of systematic risk: using high-frequency characterization of Tehran stock exchange. Accepted in International Journal of Finance and Managerial Accounting, under publication.
* Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The Review of Economics and Statistics, 89(4), 701-720.
* Andersen, T. G., Bollerslev, T., Diebold, F. X., & Wu, G. (2006). Realized beta: Persistence and predictability Econometric Analysis of Financial and Economic Time Series (pp. 1-39): Emerald Group Publishing Limited.
* Andersen, T. G., Bollerslev, T., Diebold, F. X., & Wu, J. G. (2005). A framework for exploring the macroeconomic determinants of systematic risk. Retrieved from
* Barndorff-Nielsen, O. E., & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of financial Econometrics, 4(1), 1-30.
* Barndorff‐Nielsen, O. E., & Shephard, N. (2004). Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics. Econometrica, 72(3), 885-925.
* Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political Economy, 81(3), 637-654.
* Bollerslev, T., Law, T. H., & Tauchen, G. (2008). Risk, jumps, and diversification. Journal of Econometrics, 144(1), 234-256.
* Bollerslev, T., Li, S. Z., & Todorov, V. (2016). Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns. Journal of financial economics, 120(3), 464-490.
* Chatterjee, S., & Lubatkin, M. (1990). Corporate mergers, stockholder diversification, and changes in systematic risk. Strategic Management Journal, 11(4), 255-268.
* Chiarella, C., Dieci, R., & He, X.-Z. (2013). Time-varying beta: a boundedly rational equilibrium approach. Journal of Evolutionary Economics, 23(3), 609-639.
* Dungey, M., McKenzie, M., & Smith, L. V. (2009). Empirical evidence on jumps in the term structure of the US Treasury market. Journal of Empirical Finance, 16(3), 430-445.
* Groenewold, N., & Fraser, P. (1997). Time-varying Betas and Macroeconomic Influences: Department of Economics, University of Western Australia.
* Hanousek, J., & Novotný, J. (2012). Price jumps in Visegrad-country stock markets: An empirical analysis. Emerging Markets Review, 13(2), 184-201.
* Henkel, S. J., Martin, J. S., & Nardari, F. (2011). Time-varying short-horizon predictability. Journal of financial economics, 99(3), 560-580.
* Huang, X., & Tauchen, G. (2005). The relative contribution of jumps to total price variance. Journal of financial Econometrics, 3(4), 456-499.
* Lee, S. S., & Mykland, P. A. (2008). Jumps in financial markets: A new nonparametric test and jump dynamics. Review of Financial Studies, 21(6), 2535-2563.
* Mancini, C. (2009). Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps. Scandinavian Journal of Statistics, 36(2), 270-296.
* Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of financial economics, 3(1-2), 125-144.
* Noureldin, D., Shephard, N., & Sheppard, K. (2012). Multivariate high‐frequency‐based volatility (HEAVY) models. Journal of Applied Econometrics, 27(6), 907-933.
* Patton, A. J., & Verardo, M. (2012). Does beta move with news? Firm-specific information flows and learning about profitability. Review of Financial Studies, 25(9), 2789-2839.
* Reeves, J. J., & Wu, H. (2013). Constant versus Time‐Varying Beta Models: Further Forecast Evaluation. Journal of Forecasting, 32(3), 256-266.
* Sadorsky, P. (2012). Modeling renewable energy company risk. Energy Policy, 40, 39-48.
* Savor, P., & Wilson, M. (2016). Earnings announcements and systematic risk. The Journal of Finance, 71(1), 83-138.
* Sayed, M., Dungey, M., & Yao, W. (2015). High frequency characterization of Indian banking stocks.
* Shan, W. C., & Alles, L. (2000). The Sensitivity of Australian Industry Betas to Macroeconomic Factors.
* Todorov, V., & Bollerslev, T. (2010). Jumps and betas: A new framework for disentangling and estimating systematic risks. 157(2), 220-235.
* Yao, J. (2012). Semi‐Parametric Examination of Industry Risk: The Australian Evidence. Australian Economic Papers, 51(4), 228-246.
_||_