پیش بینی شاخص های مالی شرکت ها با استفاده از الگوریتم های فرا ابتکاری تخمین زن میانگین شرطی و ژنتیک
محورهای موضوعی :
دانش سرمایهگذاری
ابراهیم علی زاده
1
,
حمیدرضا وکیلی فرد
2
,
محسن حمیدیان
3
1 - گروه حسابداری، واحد بین المللی کیش، دانشگاه آزاد اسلامی، جزیره کیش، ایران
2 - دانشیار دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، دانشکده مدیریت و اقتصاد، تهران، ایران(نویسنده مسئول)
3 - استادیار دانشگاه آزاد اسلامی، واحد تهران جنوب، دانشکده اقتصاد و حسابداری، تهران، ایران
تاریخ دریافت : 1398/11/16
تاریخ پذیرش : 1398/11/20
تاریخ انتشار : 1401/04/01
کلید واژه:
الگوریتم ژنتیک,
واژه های کلیدی: شاخص های مالی,
تخمین زن میانگین شرطی,
چکیده مقاله :
چکیدهپیش بینی وضعیت مالی شرکت ها مبتنی بر شاخص های مالی یکی از مهم ترین موضوعات مورد توجه سرمایه گذاران، اعتبار دهندگان و دیگر ذی نفعان شرکت نظیر عرضه کنندگان یا خرده فروشان است. چرا که، ارزیابی وضعیت مالی یک شرکت پیش از اینکه به هرگونه تصمیم گیری در زمینه سرمایه گذاری یا اعطای وامی منجر شود برای پیش گیری از زیان ضروری به نظر می رسد. این پژوهش با هدف پیش بینی شاخص های مالی شرکت ها با استفاده از روش تخمین زن میانگین شرطی و الگوریتم ژنتیک به انجام رسید. روش پژوهشDM-CRISP بوده و داده های مالی 130 شرکت بورسی طی 10 سال از 1388 تا 1397 تحلیل گردید. نتایج تحقیق نشان داد که، روش تخمین زن میانگین شرطی از دقت و توانایی بسیار بالایی در مدلسازی برخوردار می باشد. همچنین، استفاده از الگوریتم ژنتیک به صورت تلفیقی دقت پیش بینی را افزایش می دهد. فعالان بازار سرمایه می توانند از نتایج پژوهش جهت پیش بینی بهتر شاخص های مالی و عملکردی شرکت ها استفاده نمایند.
چکیده انگلیسی:
AbstractPredicting the financial position of companies based on financial indicators is one of the most important issues of interest to investors, creditors and other stakeholders of the company such as suppliers or retailers. Because, evaluating a company's financial position before making any investment or lending decisions seems necessary to prevent losses. The purpose of this study was to predict the financial indices of companies using the conditional average estimator method (CAE) and genetic algorithm (GA). The research method was DM-CRISP and the financial data of 130 stock companies over 10 years from 2009 to 2018 were analyzed. The results showed that the conditional average estimator method has high accuracy and ability in modeling. Also, the use of genetic algorithm in combination increases the accuracy of prediction. Capital Market Operators Can Use Research Results to Better Predict Corporate Financial and Performance Indicators.
منابع و مأخذ:
اصولیان، محمد و کر، آیجمال، (1396)، پیش بینی اهرم مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران به کمک مدل های شبیه سازی، فصلنامه تحقیقات مالی، دوره 19، شماره 1، صفحات 1-22.
راعی، رضا و فلاحپور، سـعید، (1393)، پـیش بینـی درمانـدگی مـالی شرکت ها با استفاده از شبکه های عصبی مصنوعی، تحقیقات مالی، سال ششم، شماره 17. صفحات 39-69.
رئوفی، علی و محمدی، تیمور، (1397)، پیش بینی بازده بازار سهام تهران با استفاده از ترکیب تجزیه موجک و شبکه عصبی فازی تطبیقی، فصلنامه پژوهش های اقتصادی ایران، دوره 23، شماره 76، صفحات 107-136.
صادقی شریف، سیدجلال و فرازمند، سجاد، (1396)، ارزیابی پیشبینیپذیری قیمت سهام با استفاده از شبکههای عصبی فازی در بورس تهران، فصلنامه سیاست های مالی و اقتصادی، دوره 5، صفحات 97-115.
علیزاده، ابراهیم، (1398)، ارائه الگوی مقایسه ای اثر مولفه های خرد و کلان اقتصادی بر شاخص های مالی مبتنی بر الگوریتم فرا ابتکاری، رساله دکترا، دانشگاه آزاد اسلامی، واحد کیش.
نادری خورشــیدی، علیرضا و ســلگی، محمد (1394). بررســی تأثیر قابلیت های سازمان و ســاختار صنعت بر مسئولیت پذیری اجتماعی در شرکت های پذیرفته شده در بورس اوراق بهادار تهران. مجله مدیریت بازرگانی، دوره 7، شماره 1، صص 209-229.
Altman, E. I., Zhang, L., & Yen, J. (2007). Corporate financial distress diagnosis in China. New York University Salomon Center, Working Paper.
Bai, , Ng, S. , 2002. Determining the number of factors in approximate factor models. Econometrica 70, 191–221.
Casey, C. J. Jr (1980) ‘Variations in accounting information load: the effect on loan officers’ predictions of bankruptcy’, The Accounting Review, 55(1) (January): 36–49.
Chun, , Keles, S. , 2010. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. B 72, 3–25.
Divsalar, M., Javid, M. R., Gandomi, A. H., Soofi, J. B., & Mahmood, M. V. (2011). Hybrid genetic programming-based search algorithms for enterprise bankruptcy prediction. Applied Artificial Intelligence, 25(8), 669-692.
Drezner, Z., Marcoulides, G. A., & Hoven Stohs, M. (2018). Financial applications of a tabu search variable selection model. Journal of Applied Mathematics and Decision Sciences, 5(4), 215-234.
Du Jardin, P. (2010). Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy. Neurocomputing, 73(10-12), 2047-2060.
Ericsson, , Jansen, E. , Kerbeshian, N. , Nymoen, R. , 1998. Interpreting a monetary conditions index in economic policy. In: Topics in Monetary Policy Modelling, Conference Papers, Vol. 6. Bank for International Settlements.
Fernandez-Corugedo, E., McMahon, M., Millard, S., Rachel, L., 2011. Understanding the Macroeconomic Effects of working Capital in the United Kingdom. Bank of England Working Paper 422.
Grabec I, Sachse W. Synergetics of Measurement, Prediction and Control. Springer: Berlin, 1997.
Millard, S., Nicolae, A., 2014. The Effect of the Financial Crisis on TFP Growth: A General Equilibrium Approach. Bank of England Working Paper 502. Mueller, P., 2009. Credit Spreads and Real Activity EFA 2008 Athens Meetings Paper.
Rossi, B., Advances in forecasting under instability. In: Elliott, G., Timmermann, A. (Eds.), Handbook of Economic Forecasting. Elsevier, pp. 1203–1324 . Stock, J.H. , Watson, M.W. , 2002. Forecasting using principal components from a large number of predictors. J. Am. Stat. Assoc. 97, 1167–1179.
Stewart, J. and Hensher, D.A. (2014) ‘Predicting Firm Financial Distress: A Mixed Logit Model’ , The Accounting review, Oct 79(4): 1011-1038.
Tsai, C. F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Systems, 22(2), 120-127.
Zhou, L., Lai, K. K., & Yen, J. (2012). Empirical models based on features ranking techniques for corporate financial distress prediction. Computers & Mathematics with Applications, 64(8), 2484-2496.
_||_