Kinetic study of unsaturated ketones epoxidation with hydrogen peroxide through the inverse phase transfer catalysis and effect of ultrasonic waves in this epoxidation
Subject Areas : Journal of the Iranian Chemical ResearchMohammad Taghi Taghizadeh 1 * , Tahere Shaidaii 2 , Narges Sabouri 3
1 - Department of Physical chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
2 - Department of Physical chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
3 - Department of Physical chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
Keywords: Kinetic study, Epoxidation, ultrasonic waves, Inverse phase transfer catalyst,
Abstract :
Kinetic study of epoxidation of unsaturated ketone of mesityl oxide was studied by usingHydrogen peroxide in the presence of dodecyltrimethyl ammonium bromide (DTAB) as aninverse phase transfer catalyst. The reaction was carried out in the two-phase media of waterheptanewith 1:1 ratio in 25 °C. It was found that the order of reaction for mesityl oxide forketone concentration in the range of 0.03- 0.1 mol L-1 are 0.8906. And also with regard tocatalyst concentrations in the range of 0.07- 0.2 mol L-1, the order of reaction for catalyst is0.1205. The order of reaction of Hydrogen peroxide in the range o of 1.5-4 mol L-1 concentrationfor mesityl oxide is –0.1411. The activation energy of the reaction is 27.51 kJ mol-1 in therestricted temperature between 10-25 °C and it was observed that reaction rate enhances bytemperature increase. As the phase transfer catalyst depends strongly on mass transfer betweentwo phases, it is well understood that ultrasonic waves have a greater efficiency of interfacemixing than conventional agitation. So, in this research the effect of ultrasonic waves incomparison with magnetic stirrer was studied. The results showed that an ultrasonic waveaccelerates on the reaction.
[1] B.D. Brandes, E.N. Jacobsen, Tetrahedron Lett. 36 (1995) 5123-5126.
[2] M. Palucki, J. Gormick, E.N. Jacobsen, Tetrahedron Lett. 36 (1995) 5457-5460.
[3] D. Mohajer, S. Tangestaninejed, J. Chem. Soc. Chem. Commun. (1993) 240-241.
[4] D. Mohajer, S. Tangestaninejed, Tetrahedron Lett. 35 (1994) 945-948.
[5] W. Zhang, E.N. Jacobsen, J. Org. Chem. 56 (1991) 2296-2298.
[6] T. Schwenkreis, A. Berkessel, Tetrahedron Lett. 34 (1993) 4785-4788.
[7] R. Newmann, M. Dahan, J. Chem. Soc. Chem. Commun. (1995) 171-172.
[8] R. Newmann, A.M. Klenkin, J. Org. Chem. 59 (1994) 7577-7579.
[9] C. Cativela, F. Figueras, J.M. Fraile, J.I. Garcia, J.A. Mayoral, Tetrahedron Lett. 36 (1995) 4125-
4128.
[10] R.W. Murray, M. Singh, B.L. Williams, H.M. Moncrieff, Tetrahadron Lett. 36 (1995) 2437-2440.
[11] W. Adam, F. Prechti, M.J. Richter, A.K. Smerz, Tetrahedron Lett. 36 (1995) 4991-4994.
[12] J.M. Fraile, J.I. Garcia, J.A. Mayoral, L.C. Menorval, J. Chem. Soc. Chem. Commun. (1995) 539-
540.
[13] Y.D. Wu, W.D. K. Lai, J. Org. Chem. 60 (1995) 673-680.
[14] W. Adam, L. Hadjarapoglou, B. Nestler, Tetrahedron Lett. 31 (1990) 331-334.
[15] P.A. Greco, M. Nishizawa, N. Marinovic, J. Am. Chem. Soc. 99 (1977) 5773-5778.
[16] L.J. Mathias, R.A. Waidya, J. Am. Chem. Soc. 108 (1986) 1093-1094.
[17] W.K. Fife, Z.D. Zhang, J. Org. Chem. 51 (1986) 3744-3748.
[18] W.K. Fife, Y. Xin, J. Am. Chem. Soc. 109 (1987) 1278-1279.
[19] S.M. Chang, S.M. Jwo, J. Mol. Catal. A 160 (2000) 357-366.
[20] S.M. Hung, J.J. Jwo, J. Mol. Catal. A 154 (2000) 55-63.
[21] B. Boyer, A. Hambardzoumian, N. Beylerian, Tetrahedron 56 (2000) 303-305.
[22] V. Polackova, V. Tornova, P. Eleeko, J. Ultrason. Sonochemistry 3 (1996) 15-17.
[23] B.S. Bhathkhande, S.D. Samant, J. Ultrason Sonochemistry 5 (1998) 7-12.
[24] M.H. Entezari, A.A. Shameli, J. Ultrason. Sonochemistry 7 (2000) 169-172.
[25] M. H. Entezari, A. Keshavarzi, J. Ultrason. Sonochemistry, 8 (2001) 213-216.
[26] F.G. Tao, H. Huang, J. Appl. Chem. 5 (1988) 91-94.
[27] E. Ishikawa, T. Yamase, J. Mol. Catal. A 142 (1999) 61-76.