Microwave induced combustion Synthesis of Nano- Codoped Ceria and their electrical properties
Subject Areas : Journal of the Iranian Chemical Research
1 - Department of chemistry, University of Science and Technology of Iran, Tehran, Iran
Keywords: Microwave, Solid oxide fuel cell, Doped ceria, Combustion Synthesis,
Abstract :
In this work, Ce0.75Gd0.1Ca0.15O1.8 nanopowders are successfully synthesized by a Glycine-nitrate combustionprocess under the microwave irradiation. Then calcination was carried out at 700 °C. Calcined powdersidentified by room temperature X-ray diffraction were single phase and had a crystallite size between 16 to 24nm (based on Schererr formula). Scanning electron microscopy (SEM) was employed to characterize themorphology of powder. We also studied the effect of fuel to nitrate ratio on the amount of released energyand on the crystallite size and compositional homogeneity of the resulting powders. Finally electricalproperties of obtained powder were studied.
[1] I. Hideaki, T. Hiroaki, Solid State Ionics 83 (1996) 1-16.
[2] B.C.H. Steele, Solid State Ionics 129 (2000) 95-110.
[3] T.S.Zhang, J.Ma, L.B.Kong, S.H.Chan, Solid State Ionics 167 (2004) 203-207.
[4] T.S. Zhang, Z.Q. Zeng, H.T. Huang, P. Hing, J. Kilner, Mater. Lett. 57 (2002) 124-129.
[5] J. Herle, D. Seneviratne, A.J. McEvoy, J. Eur. Ceram. Soc. 19 (1999) 837-841.
[6] F.Y. Wang, S.Y. Chen, S. Cheng, Electrochem. Commun. 6 (2004) 746-746.
[7] F.Y. Wang, S.Y. Chen, Q. Wang, S.X. Yu, S. Cheng, Catal. Today 97 (2004) 189-194.
[8] D. A. Fumo, M. R. Morelli, Mater. Res. Bull. 31 (1996) 1243–1255.
[9] D. A. Fumo,J. R. Jurado, A. M. Segadaes, Mater. Res. Bull. 32 (1997) 1459-1470.
[10] J. R. Jain, K. C. Adiga,V. R. P. Verneker, Comb. Flame 40 (1981) 79-71.
[11] R. Gopi Chandran, K.C. Patil, G.T. Chandrappa, J. Mater. Sci. Lett. 14 (1995) 548-551.
[12] K.C. Patil, S.T. Aruna, Curr. Opin. Solid State Mater. Sci. 2 (1997) 158-165.
[13] J. Van herle, T. Horita, T. Kawada, Solid State Ionics 86–88 (1996) 1255-1258.
[14] Pradyot Dattaa, Peter Majewski, Mater. Charact. 60 (2009) 138-143
[15] T. Y. Peng, H. P. Yang, X. L. Pu, B. Hu, Z. C. Jiang, Mater. Lett. 58 (2004) 352-356.
[16] R. D. Purohit, S. Saha, A. K. Tyagi, J. Nucl. Mater. 288 (2001) 7-10.
[17] N. Dasgupta, R. Krishnamoorthy, K. T. Jacob, J. Inorg. Mater. 3 (2002) 143-149.
[18] T. Mimani, K.C. Patil, Mater. Phys. Mech. 4 (2001) 1-5.
[19] T. V. Anuradha, S. Ranganathan, T. Mimani, Scripta Mater. 44 (2001) 2237-2241.
[20] G. Fagherazzi, S. Polizzi, M. Bettinelli, A. Speghini, J. Mater. Res. 15 (2000) 586-589.
[21] D. G. Lamas, R. E. Juarez, G. E. Lascalea, J. Mater. Sci. Lett. 20 (2001) 1447-1449.
[22] Xu Hongmei, Yan Hongge , Chen Zhenhua , Solid State Sci. 10 (2008) 1179-1184
[23] S. Zha, C. Xia, G. Meng, J. Power Sources 115 (2003) 44-48.