بهینهسازی چندهدفه شبکه تامین فرآوردههای خونی به منظور حداقلسازی زمان ارسال و میزان تقاضای برآورد نشده بیمارستانی
محورهای موضوعی : -مدیریت خدمات بهداشتی و درمانیزینب کاظمی 1 , مهدی همایون فر 2 , مهدی فدایی 3 , منصور صوفی 4 , علی صالح زاده 5
1 - دانشجوی دکتری، گروه مدیریت صنعتی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
2 - استادیار، گروه مدیریت صنعتی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
3 - استادیار، گروه مدیریت صنعتی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
4 - استادیار، گروه مدیریت صنعتی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
5 - استادیار، گروه زیست شناسی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
کلید واژه: بهینهسازی چندهدفه, الگوریتم فرا ابتکاری, رویکرد هیبریدی, شبکه تامین فرآوردههای خونی,
چکیده مقاله :
مقدمه: با توجه به اهمیت خون به عنوان یک عنصر حیاتی در سیستم سلامت، در این پژوهش، زنجیره تامین خون در سه سطح اهداکنندگان، بانکها (مراکز خون) و بیمارستانها در قالب یک مدل چندهدفه به منظور حداقل سازی مجموع هزینهها، حداقلسازی زمان کلی ارسال واحدهای خونی و حداقل سازی میزان تقاضای برآورد نشده بیمارستان ها در هر دوره، مدل سازی شده است.روش پژوهش: پژوهش حاضر از نظر هدف، کاربردی، از نظر روش توصیفی و از نوع کمی است. داده های مورد نیاز برای پیادهسازی مساله واقعی در سال 1400 با مراجعه به دفتر منطقه ای سازمان انتقال خون استان تهران و با همکاری سیستم نگاره گردآوری شده است. با توجه به ماهیت Np-hard مساله، مدل پیشنهادی با استفاده از سه الگوریتم ژنتیک، NSGAII و MOPSO در نرم افزار گمز حل شده است.یافتهها: در مدل پیشنهادی، تطابق گروه های خونی در تامبن تقاضا، سیستم صف، تخصیص گروه های خونی در آزمایشگاه ها و بانکهای خون، هدر رفت خون در آزمایشگاه، انتقال محصولات بین مراکز تقاضا و نیز پارامترهای حساس و تعیین کننده ای مدل مانند؛ پارامتر تقاضا، اهدای خون و زمان حمل محصولات خونی بین اجزای شبکه، به صورت غیرقطعی در نظر گرفته شده است. یافتهها نشان می دهند که در اجرای مسائل 3، 7، 10 و 12 برای شاخص کیفیت الگوریتم MOPSO دارای عملکرد مناسبتری است، اما به طور کلی و بر اساس دفعات اجرا و همچنین میانگین آنها، الگوریتم NSGA-II عملکرد بهتری دارد.نتیجهگیری: بر اساس نتایج، مدل ارائه شده منجر به کاهش مجموع هزینه ها، زمان کلی ارسال واحدهای خونی و میزان تقاضای برآورد نشده بیمارستانها می شود.
Introduction: Due to the importance of blood as a vital element in the health system, in this study, the blood supply chain is modeled at three levels of donors, banks (blood centers) and hospitals in the form of a multi-objective model to minimize total costs, total delivery time of blood units and non-estimated demand of hospitals in each period.Methods: The present study is applied in terms of purpose and descriptive and quantitative in terms of method. The data needed to implement the real problem in 2021 have been collected by through the regional office of the Tehran blood transfusion organization along with the Negareh system. Due to the Np-hard nature of the problem, the proposed model is solved using three algorithms of GA, NSGA-II and MOPSO in GAMS software.Results: In the proposed model, matching the blood type in meeting demand; blood type delivery and allocation system in laboratories and blood banks, blood wasting in laboratory, transfer of products between demand centers, sensitive and determinative parameters of the model such as; demand, blood donation and delivery time of blood products between network components are considered indefinitely. The findings show that the MOPSO algorithm has a better performance in problems 3, 7, 10 and 12 for the QM index, but generally, based on running times and their average, the NSGA-II algorithm is better.Conclusion: Based on the results, the proposed model leads to a reduction in total costs, total delivery time of blood units and unapproved demand of hospitals.
1- Manavizadeh N, Mashayekhi N, Shabani M. Designing a fuzzy green blood supply chain network with regard to reducing blood product waste, Second International Conference on Challenges and New Solutions in Industrial Engineering, Management and Accounting, Damghan, 2021. [In Persian]
2- Zahiri B, Pishvaee MS. Blood supply chain network design considering blood group compatibility under uncertainty. International Journal of Production Research, 2017; 55(7): 2013-2033.
3- Dehghani M, Abbasi B. An age-based lateral-transshipment policy for perishable items. International Journal of Production Economics, 2019; 198: 93-103.
4- Cheraghi S, Hoseini Motlagh S, Ghatreh Samani M. A robust bi-objective model for integrated blood supply chain network design considering transshipment between facilities under uncertainty. Quarterly Journal of Transportation Engineering, 2019; 10(4): 737-770. [In Persian]
5- Tofighi S, Torabi SA, Mansouri SA. Humanitarian logistics network design under mixed uncertainty. European Journal of Operational Research, 2016; 250(1): 239-250.
6- Mousavi R, Salehi-Amiri AH, Zahedia A, Hajiaghaei-Keshteli M. Designing a supply chain network for blood decomposition by utilizing social and environmental factor. Computers & Industrial Engineering, 2021; 160: 107501.
7- Kazemi Matin R, Azadi M, Farzipoor-Saen R. Measuring the sustainability and resilience of blood supply chains, Decision Support Systems, 2021; 21356765.
8- Shokouhifar M, Sabbaghi MM, Pilevari N. Inventory management in blood supply chain considering fuzzy supply/ demand uncertainties and lateral transshipment. Transfusion and Apheresis Science, 2021; 60: 103103
9- Civelek I, Karaesmen I, Scheller-Wolf A. Blood platelet inventory management with protection levels. European Journal of Operational Research, 2015; 243(3): 826-838.
10- Doodman M, Bozorgi Amiri A. Integrate Blood Supply Chain Network Design with Considering Lateral Transshipment under Uncertainty. Journal of Industrial Management Perspective, 2020; 9(4): 9-40. [In Persian]
11- Eskandari-Khanghahi M, Tavakkoli-Moghaddam R, Taleizadeh AA, Amin SH. Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Engineering Applications of Artificial Intelligence, 2018; 71: 236-250.
12- Dehghani M, Abbasi B, Oliveira F. Proactive transshipment in the blood supply chain: A stochastic programming approach. Omega, 2019; 23: 1245-1253.
13- Bohonek M, Kutac D, Acker JP, Seghatchian J. (2020). Optimizing the supply of whole blood-derived bioproducts through the combined implementation of cryopreservation and pathogen reduction technologies and practices: an overview. Transfus Apher Sci: 102754.
14- Ahmadimanesh M, Tavakoli A, Pooya A, Dehghanian F. Designing an optimal inventory management model for the blood supply chain. Quality Improvement Study, 2020; 1-8. [In Persian]
15- Zhou Y, Zou T, Liu C, Yu H, Chen L, Su J. Blood supply chain operation considering lifetime and transshipment under uncertain environment. Applied Soft Computing, 2021; 106: 107364.
16- Arani M, Chan Y, Liu X, Momenitabar M. A lateral resupply blood supply chain network design under uncertainties. Applied Mathematical Modelling, 2021; 93: 165–187.
17- Maashisani F, Hajiaghaei-Keshteli M, Gholipour- kanani Y, Harsej F. Development of Multi - Objective, Multi- Period and Multi- Level Blood Supply Chain Planning Model. Journal of healthcare management, 2021; 12(2): 71-85. [In Persian]
18- Arvan M, Tavakkoli-Moghaddam R, Abdollahi M. Designing a bi-objective, multi-product supply chain network for blood supply. Uncertain Supply Chain Management, 2015; 3: 57-68.
19- Gunpinar S, Centeno L. Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers & Operations Research, 2015; 54: 129-141.
_||_1- Manavizadeh N, Mashayekhi N, Shabani M. Designing a fuzzy green blood supply chain network with regard to reducing blood product waste, Second International Conference on Challenges and New Solutions in Industrial Engineering, Management and Accounting, Damghan, 2021. [In Persian]
2- Zahiri B, Pishvaee MS. Blood supply chain network design considering blood group compatibility under uncertainty. International Journal of Production Research, 2017; 55(7): 2013-2033.
3- Dehghani M, Abbasi B. An age-based lateral-transshipment policy for perishable items. International Journal of Production Economics, 2019; 198: 93-103.
4- Cheraghi S, Hoseini Motlagh S, Ghatreh Samani M. A robust bi-objective model for integrated blood supply chain network design considering transshipment between facilities under uncertainty. Quarterly Journal of Transportation Engineering, 2019; 10(4): 737-770. [In Persian]
5- Tofighi S, Torabi SA, Mansouri SA. Humanitarian logistics network design under mixed uncertainty. European Journal of Operational Research, 2016; 250(1): 239-250.
6- Mousavi R, Salehi-Amiri AH, Zahedia A, Hajiaghaei-Keshteli M. Designing a supply chain network for blood decomposition by utilizing social and environmental factor. Computers & Industrial Engineering, 2021; 160: 107501.
7- Kazemi Matin R, Azadi M, Farzipoor-Saen R. Measuring the sustainability and resilience of blood supply chains, Decision Support Systems, 2021; 21356765.
8- Shokouhifar M, Sabbaghi MM, Pilevari N. Inventory management in blood supply chain considering fuzzy supply/ demand uncertainties and lateral transshipment. Transfusion and Apheresis Science, 2021; 60: 103103
9- Civelek I, Karaesmen I, Scheller-Wolf A. Blood platelet inventory management with protection levels. European Journal of Operational Research, 2015; 243(3): 826-838.
10- Doodman M, Bozorgi Amiri A. Integrate Blood Supply Chain Network Design with Considering Lateral Transshipment under Uncertainty. Journal of Industrial Management Perspective, 2020; 9(4): 9-40. [In Persian]
11- Eskandari-Khanghahi M, Tavakkoli-Moghaddam R, Taleizadeh AA, Amin SH. Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Engineering Applications of Artificial Intelligence, 2018; 71: 236-250.
12- Dehghani M, Abbasi B, Oliveira F. Proactive transshipment in the blood supply chain: A stochastic programming approach. Omega, 2019; 23: 1245-1253.
13- Bohonek M, Kutac D, Acker JP, Seghatchian J. (2020). Optimizing the supply of whole blood-derived bioproducts through the combined implementation of cryopreservation and pathogen reduction technologies and practices: an overview. Transfus Apher Sci: 102754.
14- Ahmadimanesh M, Tavakoli A, Pooya A, Dehghanian F. Designing an optimal inventory management model for the blood supply chain. Quality Improvement Study, 2020; 1-8. [In Persian]
15- Zhou Y, Zou T, Liu C, Yu H, Chen L, Su J. Blood supply chain operation considering lifetime and transshipment under uncertain environment. Applied Soft Computing, 2021; 106: 107364.
16- Arani M, Chan Y, Liu X, Momenitabar M. A lateral resupply blood supply chain network design under uncertainties. Applied Mathematical Modelling, 2021; 93: 165–187.
17- Maashisani F, Hajiaghaei-Keshteli M, Gholipour- kanani Y, Harsej F. Development of Multi - Objective, Multi- Period and Multi- Level Blood Supply Chain Planning Model. Journal of healthcare management, 2021; 12(2): 71-85. [In Persian]
18- Arvan M, Tavakkoli-Moghaddam R, Abdollahi M. Designing a bi-objective, multi-product supply chain network for blood supply. Uncertain Supply Chain Management, 2015; 3: 57-68.
19- Gunpinar S, Centeno L. Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers & Operations Research, 2015; 54: 129-141.