تأثیر استفاده از یک مانع ایرفویل شکل بر افزایش کارایی یک توربین بادی محور عمودی ساونیوس
محورهای موضوعی :
انرژی های تجدید پذیر
کیهان لایقمند
1
,
نیما غیاثی طبری
2
,
مهران زرکش
3
1 - دانشجوی دکتری، گروه مکانیک، دانشگاه آزاد اسلامی واحد دشستان، برازجان، ایران.
2 - استادیار، گروه مکانیک، دانشگاه آزاد اسلامی واحد دشستان، برازجان، ایران. *(مسوول مکاتبات)
3 - استادیار، گروه مکانیک، دانشگاه آزاد اسلامی واحد دشستان، برازجان، ایران.
تاریخ دریافت : 1399/07/11
تاریخ پذیرش : 1399/09/18
تاریخ انتشار : 1400/12/01
کلید واژه:
دینامیک سیالات محاسباتی,
ساونیوس,
توربین بادی,
مانع ایرفویل شکل,
چکیده مقاله :
زمینه و هدف: افزایش روز افزون جمعیت نیاز به توسعه پایدار انرژی را روز به روز بیشتر می کند. همچنین افزایش سطح گازهای گلخانه ای و کاهش سطح ذخایر انرژی فسیلی، مراکز تحقیقاتی دنیا را به سمت انرژی های تجدیدپذیر معطوف کرده است. در میان انرژی های تجدیدپذیر، انرژی باد یکی از مطرح ترین گونه های انرژی های تجدیدپذیر می باشد. در این مطالعه با استفاده از مانع ایرفویل شکل راندمان توربین بادی ساونیوس به طور قابل توجهی افزایش یافته است. این افزایش راندمان به صورت ارتقای قابلیت شروع بکار خودکار توربین بادی ساونیوس و کاهش گشتاور منفی ایجاد شده توسط پره برگشتی انجام شده است.
روش بررسی :پیکربندی های مختلف سیستم منحرف کننده (مانع) پیشنهاد شده با استفاده از تکنیک دینامیک سیالات محاسباتی (CFD) به صورت عددی بررسی شده است. شبیه سازی سه بعدی ناپایا معادلات ناویر-استوکس متوسط گیری شده رینولدز (URANS) همراه با مدل توربولانسی SST k-ω انجام شده و با داده های تجربی موجود اعتبارسنجی گردیده است.
یافته ها: نتایج پیش بینی شده نشان می دهد که عملکرد روتور ساونیوس بسیار به موقعیت و زاویه مانع بستگی دارد. بنابراین، مقادیر موقعیت و زاویه مناسب برای به دست آوردن بالاترین ضرایب گشتاور و توان وجود داشته است. استفاده از مانع مطلوب ایرفویل شکل، به طور قابل توجهی مقادیر ضریب گشتاور ایستاتیکی را در تمام محدوده زاویه ای خصوصاً در زاویه چرخش بین 0 تا 30 درجه و 150 درجه تا 180 درجه افزایش می دهد. با پوشش صحیح پره برگشتی با استفاده از مانع ایرفویل شکل، مقادیر ضریب گشتاور استاتیکی تا 2 برابر بیشتر از مقدار تولید شده در حالت بدون مانع افزایش می یابد.
بحث و نتیجه گیری: توربین ساونیوس از راندمان پایینی برخوردار است. بنابراین، مطالعه حاضر با ارائه یک سیستم بهبود دهنده منحرف کننده (مانع) منجر به تولید توان و ضرایب گشتاور بالاتر می شود که در نهایت باعث ایجاد راندمان بالاتر و قابلیت شروع به کار خودکار بهتر می شود.
چکیده انگلیسی:
Background and Objective: With the increment of population, the need for sustainable energy development has been raised. By increasing greenhouse gas emissions and decreasing the fossil energy reserves have also shifted research centers around the world to renewable energy sources. Among renewable energies, wind energy is one of the most important types of renewable energy. In this study, the efficiency of the Savonius wind turbine is significantly increased by using an airfoil-shaped deflector. This increase in efficiency is carried out by upgrading the self-starting performance capability of the Savonius wind turbine and reducing the negative torque generated by the returning blade.
Material and Methodology: Different configurations of the proposed deflector system are considered numerically using the CFD solver. A three-dimensional incompressible unsteady Reynolds-Averaged Navier-Stokes simulation in conjunction with the SST k-ω turbulence model is done and validated with the available experimental data.
Findings: The predicted results indicated that the performance of the Savonius rotor is highly dependent on the position and angle of the deflector. Thus, there was an appropriate position and angle values to obtain the highest torque and power coefficients. It was concluded that using the favorable airfoil-shaped deflector significantly enhanced the static torque coefficient values in all angular ranges especially in the rotation angles between 0° to 30° and 150° to 180°. By properly covering the returning blade using the airfoil-shaped deflector, the static torque coefficient values increased up to 2 times higher than that generated by without deflector case.
Discussion and Conclusion: The Savonius turbine suffers from poor efficiency. Hence, the present work dealt with proposing an improved deflector system led to generate higher power and torque coefficients which resulted in capturing a higher efficiency and better self-starting capability.
منابع و مأخذ:
L.B, Kothe., S.V, Möller., A.P, Petry., 2020. Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, vol. 148, pp. 627-638.
A.S, Saad., I.I, El-Sharkawy., S, Ookawara, M, Ahmed., 2020. Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, vol. 209, pp. 112673.
S.B, Ahangar., J.S, Allen., S.H, Lee., C.K, Choi., 2020. Surface Plasmon Resonance Imaging: A Technique to Reveal the Dropwise Condensation Mechanism. Journal of Heat Transfer, vol. 142, pp. 030903.
F, Behrouzi., M, Nakisa., A, Maimun., Y, Ahmed., A.S, Souf-Aljen., 2019. Performance investigation of self-adjusting blades turbine through experimental study. Energy Conversion and Management, vol. 181, pp. 178-188.
S.B, Ahangar., V, Konduru., J.S, Allen., N, Miljkovic., S.H, Lee, C.K, Choi., 2020. Development of automated angle-scanning, high-speed surface plasmon resonance imaging and SPRi visualization for the study of dropwise condensation. Experiments in Fluids, vol. 61, pp. 12-20.
S.B, Ahangar., C.H, Jeong., F, Long., J.S, Allen, S.H, Lee., C.K, Choi., 2020. The Effect of Adsorbed Volatile Organic Compounds on an Ultrathin Water Film Measurement. Applied Sciences, vol. 10, pp. 5981.
R, Ricci., R, Romagnoli., S, Montelpare., D, Vitali., 2016. Experimental study on a Savonius wind rotor for street lighting systems. Applied Energy, vol.161, pp. 143-152.
S, Bayani., Y, Tabe., Y.T, Kang., S.H, Lee, C.K, Choi., 2018. Surface plasmon resonance imaging of drop coalescence at high-temporal resolution. Journal of Flow Visualization and Image Processing, vol, 25, pp. 191-205.
M, Rahim-Esbo., S, Bayani, R, Mohammadyari., A.K, Asboei., S, Mohsenian., S.E, Mousavitileboni., 2014. <b> Analytical and Numerical investigation of natural convection in a heated cylinder using Homotopy Perturbation Method. Acta Scientiarum. Technology, vol. 36, pp. 669-677.
N.M, Nouri., S, Sekhavat., S, Bayani Ahangar., N, Faal Nazari., 2012. Effect of curing condition on superhydrophobic surface for 7075Al. Journal of dispersion science and technology, vol. 33, pp. 771-774.
G, Ferrari., D, Federici., P, Schito., F, Inzoli., R, Mereu., 2017. CFD study of Savonius wind turbine: 3D model validation and parametric analysis. Renewable Energy, vol, 105, pp. 722-734.
H, Ijaz., H, Raza., G.A, Gohar., S, Ullah., A, Akhtar., M, Imran., 2020. Effect of graphene oxide doped nano coolant on temperature drop across the tube length and effectiveness of car radiator–A CFD study. Thermal Science and Engineering Progress, vol. 20, pp. 100689.
B.K, Sreejith., A, Sathyabhama., 2020. Experimental and numerical study of laminar separation bubble formation on low Reynolds number airfoil with leading-edge tubercles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, pp. 1-15.
R, Gupta., K.K, Sharma., 2011. Flow physics of a three-bucket Savonius rotor using computational fluid dynamics (CFD). International Journal of research in Mechanical engineering and technology, vol. 1, pp. 46-51.
X, Jin., Y, Wang., W, Ju., J, He., S, Xie., 2018. Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation. Renewable energy, vol. 115, pp. 41-53.
D.L, Shukla., A.U, Mehta., K.V, Modi., 2020 Dynamic overset 2D CFD numerical simulation of a small vertical axis wind turbine. International Journal of Ambient Energy, vol. 41, pp. 1415-1422.
T, Zhang., Z, Wang., W, Huang., D, Ingham., L, Ma., M, Pourkashanian., 2020. A numerical study on choosing the best configuration of the blade for vertical axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, vol. 201, pp. 104162.
M.E, Nimvari, H, Fatahian., E, Fatahian., 2020. Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Conversion and Management, vol. 220, pp. 113062.
M, Mosbahi., A, Ayadi., Y, Chouaibi., Z, Driss., T, Tucciarelli., 2019. Performance study of a Helical Savonius hydrokinetic turbine with a new deflector system design. Energy Conversion and Management, vol. 194, pp. 55-74.
M.S, Siddiqui., N, Durrani., I, Akhtar., 2015. Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine. Renewable Energy, vol. 74, pp. 661-670.
R, Lanzafame., S, Mauro., M, Messina., 2013. Wind turbine CFD modeling using a correlation-based transitional model. Renewable Energy, vol. 52, pp. 31-39.
I, Marinic-Kragic., D, Vucina, Z, Milas., 2020. Computational analysis of Savonius wind turbine modifications including novel scooplet-based design attained via smart numerical optimization. Journal of Cleaner Production, vol. 262, p. 121310.
P, Laws., J.S, Saini., A, Kumar., S, Mitra., 2020. Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study. Journal of Energy Resources Technology, vol. 142, p. 061303.
H, Fatahian., H, Salarian., J, Khaleghinia., E, Fatahian., 2018. Improving the efficiency of a Savonius vertical axis wind turbine using an optimum parameter. Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 4, pp. 27-32.
F.R, Menter., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, vol. 32, pp. 1598-1605.
P.K, Talukdar., A, Sardar., V, Kulkarni., U.K, Saha., 2018. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Conversion and Management, vol. 158, pp. 36-49.
R.E, Sheldahl., B.F, Blackwell., L.V, Feltz., 1978. Wind tunnel performance data for two-and three-bucket Savonius rotors. Journal of Energy, vol. 2, pp. 160-164.
E, Kerikous., D. Thévenin., 2019. Optimal shape of thick blades for a hydraulic Savonius turbine. Renewable Energy, vol. 134, pp. 629-638.
_||_
L.B, Kothe., S.V, Möller., A.P, Petry., 2020. Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, vol. 148, pp. 627-638.
A.S, Saad., I.I, El-Sharkawy., S, Ookawara, M, Ahmed., 2020. Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, vol. 209, pp. 112673.
S.B, Ahangar., J.S, Allen., S.H, Lee., C.K, Choi., 2020. Surface Plasmon Resonance Imaging: A Technique to Reveal the Dropwise Condensation Mechanism. Journal of Heat Transfer, vol. 142, pp. 030903.
F, Behrouzi., M, Nakisa., A, Maimun., Y, Ahmed., A.S, Souf-Aljen., 2019. Performance investigation of self-adjusting blades turbine through experimental study. Energy Conversion and Management, vol. 181, pp. 178-188.
S.B, Ahangar., V, Konduru., J.S, Allen., N, Miljkovic., S.H, Lee, C.K, Choi., 2020. Development of automated angle-scanning, high-speed surface plasmon resonance imaging and SPRi visualization for the study of dropwise condensation. Experiments in Fluids, vol. 61, pp. 12-20.
S.B, Ahangar., C.H, Jeong., F, Long., J.S, Allen, S.H, Lee., C.K, Choi., 2020. The Effect of Adsorbed Volatile Organic Compounds on an Ultrathin Water Film Measurement. Applied Sciences, vol. 10, pp. 5981.
R, Ricci., R, Romagnoli., S, Montelpare., D, Vitali., 2016. Experimental study on a Savonius wind rotor for street lighting systems. Applied Energy, vol.161, pp. 143-152.
S, Bayani., Y, Tabe., Y.T, Kang., S.H, Lee, C.K, Choi., 2018. Surface plasmon resonance imaging of drop coalescence at high-temporal resolution. Journal of Flow Visualization and Image Processing, vol, 25, pp. 191-205.
M, Rahim-Esbo., S, Bayani, R, Mohammadyari., A.K, Asboei., S, Mohsenian., S.E, Mousavitileboni., 2014. <b> Analytical and Numerical investigation of natural convection in a heated cylinder using Homotopy Perturbation Method. Acta Scientiarum. Technology, vol. 36, pp. 669-677.
N.M, Nouri., S, Sekhavat., S, Bayani Ahangar., N, Faal Nazari., 2012. Effect of curing condition on superhydrophobic surface for 7075Al. Journal of dispersion science and technology, vol. 33, pp. 771-774.
G, Ferrari., D, Federici., P, Schito., F, Inzoli., R, Mereu., 2017. CFD study of Savonius wind turbine: 3D model validation and parametric analysis. Renewable Energy, vol, 105, pp. 722-734.
H, Ijaz., H, Raza., G.A, Gohar., S, Ullah., A, Akhtar., M, Imran., 2020. Effect of graphene oxide doped nano coolant on temperature drop across the tube length and effectiveness of car radiator–A CFD study. Thermal Science and Engineering Progress, vol. 20, pp. 100689.
B.K, Sreejith., A, Sathyabhama., 2020. Experimental and numerical study of laminar separation bubble formation on low Reynolds number airfoil with leading-edge tubercles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, pp. 1-15.
R, Gupta., K.K, Sharma., 2011. Flow physics of a three-bucket Savonius rotor using computational fluid dynamics (CFD). International Journal of research in Mechanical engineering and technology, vol. 1, pp. 46-51.
X, Jin., Y, Wang., W, Ju., J, He., S, Xie., 2018. Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation. Renewable energy, vol. 115, pp. 41-53.
D.L, Shukla., A.U, Mehta., K.V, Modi., 2020 Dynamic overset 2D CFD numerical simulation of a small vertical axis wind turbine. International Journal of Ambient Energy, vol. 41, pp. 1415-1422.
T, Zhang., Z, Wang., W, Huang., D, Ingham., L, Ma., M, Pourkashanian., 2020. A numerical study on choosing the best configuration of the blade for vertical axis wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, vol. 201, pp. 104162.
M.E, Nimvari, H, Fatahian., E, Fatahian., 2020. Performance improvement of a Savonius vertical axis wind turbine using a porous deflector. Energy Conversion and Management, vol. 220, pp. 113062.
M, Mosbahi., A, Ayadi., Y, Chouaibi., Z, Driss., T, Tucciarelli., 2019. Performance study of a Helical Savonius hydrokinetic turbine with a new deflector system design. Energy Conversion and Management, vol. 194, pp. 55-74.
M.S, Siddiqui., N, Durrani., I, Akhtar., 2015. Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine. Renewable Energy, vol. 74, pp. 661-670.
R, Lanzafame., S, Mauro., M, Messina., 2013. Wind turbine CFD modeling using a correlation-based transitional model. Renewable Energy, vol. 52, pp. 31-39.
I, Marinic-Kragic., D, Vucina, Z, Milas., 2020. Computational analysis of Savonius wind turbine modifications including novel scooplet-based design attained via smart numerical optimization. Journal of Cleaner Production, vol. 262, p. 121310.
P, Laws., J.S, Saini., A, Kumar., S, Mitra., 2020. Improvement in Savonius Wind Turbines Efficiency by Modification of Blade Designs—A Numerical Study. Journal of Energy Resources Technology, vol. 142, p. 061303.
H, Fatahian., H, Salarian., J, Khaleghinia., E, Fatahian., 2018. Improving the efficiency of a Savonius vertical axis wind turbine using an optimum parameter. Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 4, pp. 27-32.
F.R, Menter., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, vol. 32, pp. 1598-1605.
P.K, Talukdar., A, Sardar., V, Kulkarni., U.K, Saha., 2018. Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Conversion and Management, vol. 158, pp. 36-49.
R.E, Sheldahl., B.F, Blackwell., L.V, Feltz., 1978. Wind tunnel performance data for two-and three-bucket Savonius rotors. Journal of Energy, vol. 2, pp. 160-164.
E, Kerikous., D. Thévenin., 2019. Optimal shape of thick blades for a hydraulic Savonius turbine. Renewable Energy, vol. 134, pp. 629-638.