بررسی دمای خنثی در ساختمان های مسکونی چند طبقه در شیراز با استفاده از شاخص های PMV و AMV
محورهای موضوعی : معماری و شهرسازیحامد عیالی 1 , هادی کشمیری 2 * , خسرو موحد 3
1 - دکتری معماری، گروه معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
2 - دانشیار معماری، گروه معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران *(مسوول مکاتبات)
3 - دانشیار معماری، گروه معماری، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران
کلید واژه: شیراز, دمای خنثی, آسایش حرارتی, ساختمان های مسکونی چند طبقه,
چکیده مقاله :
زمینه و هدف: از آن جا که سطح توقعات افراد و نیاز آن ها به ایجاد شرایط آسایش در محیط های مختلف روز به روز محسوس تر می شود، بنابراین اقلیم و شرایط محیطی، تاثیر روانی و فیزیکی اجتناب ناپذیری بر شرایط آسایش انسان دارند. لذا تعیین محدوده ی آسایش حرارتی برای هر منطقه ی اقلیمی در انحای مختلف ساخت، ضروری به نظر می رسد. هدف از این پژوهش، شناسایی محدوده ی آسایش حرارتی فضاهای داخلی ساختمان های مسکونی چند طبقه با استفاده از شاخص های پیش بینی متوسط نظرات و متوسط نظرات واقعی است.در این راستا پژوهش پیش رو به این سوال پاسخ خواهد داد که: دمای خنثی در ساختمان های مسکونی چند طبقه در شیراز در فصل گرم به چه میزان است؟روش بررسی: در این پژوهش، از روش های تحقیق مختلف با توجه به جنبه های گوناگون آن استفاده شده است لیکن مراحل اجرایی پژوهش در دو بخش "گردآوری داده و اطلاعات" و "تجزیه و تحلیل" جداسازی شد. داده ها و اطلاعات مورد نیاز این پژوهش حال نگر، براساس روش تجربی و میدانی به دو روش اصلی پرسش نامه و اندازه گیری متغیرها با استفاده از دستگاه های اندازه گیری محیطی(Lutron LM-8000A و Extech T30)، از نمونه های واحدهای مسکونی جمع آوری گردید و سپس با توصیف های تحلیلی، استنتاجی و طبقه بندی آن ها احکام لازم صادر گردید.یافته ها: اغلب افراد در کلیه فضاهای مورد مطالعه احساس گرم بودن در مقیاس اشری را داشته اند. دمای هوای فضاهای داخلی و میزان پیش بینی متوسط نظرات و هم چنین متوسط نظرات واقعی ضریب همبستگی افزایشی و مثبت وجود دارد.بحث و نتیجه گیری: نتایج تحقیق نشان می دهد که رابطه ی بین دمای هوای بیرون و دمای خنثی در ماه های گرم دارای رابطه ای خاص است که اختلاف جزیی با دیگر مطالعات جهانی دارد.
Background and Objective: As the level of people's expectations and their need to create comfort conditions in different environments becomes more and more noticeable, so the climate and environmental conditions, the inevitable psychological and physical impact on human comfort conditions have. Therefore, determining the range of thermal comfort for each climatic zone in different forms of construction seems necessary. The purpose of this study is to identify the range of thermal comfort of the interior of multi-story residential buildings using predictive indicators of average views and average real views.In this regard, the forthcoming research will answer the question: What is the neutral temperature in multi-story residential buildings in Shiraz in the hot season?Method: In this research, different research methods have been used according to its various aspects, but the implementation stages of the research were divided into two parts: "data collection and information" and "analysis". Data and information required for this present study, based on experimental and field methods, the two main methods of questionnaire and measurement of variables using environmental measuring devices (Lutron LM-8000A and Extech T30) , Samples were collected from residential units and then the necessary rulings were issued with their analytical, inferential and classification descriptions.Findings: Most people in all studied spaces were feeling warm at ASHRAE scale. The air temperature of the interior spaces and predicted mean vote (PMV) of the comments as well as the actual mean vote (AMV) of the correlation coefficient are incremental and positive.Discussion and Conclusion: The results show that outside temperature and neutral temperature have a special relationship in warm months and these results are minor differences with other global studies.
1. Marefat, M., Omidvar, A, 2008, Thermal comfort (an approach to optimizing energy consumption in buildings), Kelid Amouzesh Publishing, Tehran, Iran. (persian)
2. Taban, M., Pourjafar, M.R., Bemanian, M.R., Heydari, Sh., 2013, Determination of optimal pattern of central courtyard in Dezful column housing by relying on shadow analysis of different levels of yard, Bagh-e-Nazar Journal, Volume 10. No. 27. Tehran, pp 48-39. (persian)
3. Fishman, D., Pimbert, S., 1979, Survey of Subjective Responses to the Thermal Environment in Offices Indoor Climate, Danish Building Research Institute Copenhagen, Denmark.
4. Razjouyan, M, 2009, Comfort in a climate-friendly architecture, Tehran. Shahid Beheshti University Press, 2nd. Edition. (persian)
5. Safaeepour, M., Shabankari, M., Taqavi, S.T., 2013, Bioclimatic Indices Affecting Human Evaluation (Case Study: Shiraz City), Journal of Geography and Environmental Planning, Volume 50, Number 2, Tehran,. pp 193-210. (persian)
6. Sadeqi, M.H., Tabatabaee, S.M., 2009, Comfort conditions in dry weather conditions (Case Study: Yazd), the identity of the city, Volume 3, Number 4, Tehran, pp 39-46. (persian)
7. Heydari, Sh., 2014, Thermal Adaptation in Architecture - The First Step in Energy Saving, University of Tehran Press, Tehran, Iran. (persian)
8. Marefat, M., Omidvar, A, 2013, Thermal comfort: applied calculations and standard design considerations, Yazda Publishing, Tehran, Iran. (persian)
9. De freitas, C.R., 2002, Theory, concepts and Methods in Tourism climate Research. School of Geography and Environmental science, The University of Auckland, New Zealand.
10. Pourdeihimi, Sh., 2011, Climatic Language in Sustainable Environment Design, Volume 2, Shahid Beheshti University Press, Tehran, Iran. (persian)
11. National Standard Organization of Iran, 2011, Determination of PMV and PPD Thermal Comfort Indicators and Local Comfort Criteria, National Iranian Standard Organization Publications, Tehran, Iran. (persian)
12. ISO 7730, 2005, Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, third edition, Switzerland.
13. Nicol, F., Humphreys, M., 2010, Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251, Building and Environment, January, USA, pp 11-17.
14. Rijal, Hom B; Humphreys, Michael; Nicol, Fergus, Study on adaptive model Part 3 Development of the adaptive model for thermal comfort in Japanese houses, Architectural Institute of Japan Summary Academic Lecture Collection Summary (Kinki), 9 September 2014, Japan. pp 403-406.
15. Humphreys, M., Nicol, F., Raja, I., 2007, Field Studies of Indoor Thermal Comfort and the Progress of the Adaptive Approach, Advances in Building Energy Research, January, USA. pp 55-88
16. Ayali, H., Movahed, Kh., 2016, Determination of Optimal Orientation of Central Yard of Shiraz in Qajar Periods Based on Solar Radiation Reception, Journal of Geography and Development, Volume 14, Number 42, Zahedan, Iran, pp 161-182. (persian)
_||_
1. Marefat, M., Omidvar, A, 2008, Thermal comfort (an approach to optimizing energy consumption in buildings), Kelid Amouzesh Publishing, Tehran, Iran. (persian)
2. Taban, M., Pourjafar, M.R., Bemanian, M.R., Heydari, Sh., 2013, Determination of optimal pattern of central courtyard in Dezful column housing by relying on shadow analysis of different levels of yard, Bagh-e-Nazar Journal, Volume 10. No. 27. Tehran, pp 48-39. (persian)
3. Fishman, D., Pimbert, S., 1979, Survey of Subjective Responses to the Thermal Environment in Offices Indoor Climate, Danish Building Research Institute Copenhagen, Denmark.
4. Razjouyan, M, 2009, Comfort in a climate-friendly architecture, Tehran. Shahid Beheshti University Press, 2nd. Edition. (persian)
5. Safaeepour, M., Shabankari, M., Taqavi, S.T., 2013, Bioclimatic Indices Affecting Human Evaluation (Case Study: Shiraz City), Journal of Geography and Environmental Planning, Volume 50, Number 2, Tehran,. pp 193-210. (persian)
6. Sadeqi, M.H., Tabatabaee, S.M., 2009, Comfort conditions in dry weather conditions (Case Study: Yazd), the identity of the city, Volume 3, Number 4, Tehran, pp 39-46. (persian)
7. Heydari, Sh., 2014, Thermal Adaptation in Architecture - The First Step in Energy Saving, University of Tehran Press, Tehran, Iran. (persian)
8. Marefat, M., Omidvar, A, 2013, Thermal comfort: applied calculations and standard design considerations, Yazda Publishing, Tehran, Iran. (persian)
9. De freitas, C.R., 2002, Theory, concepts and Methods in Tourism climate Research. School of Geography and Environmental science, The University of Auckland, New Zealand.
10. Pourdeihimi, Sh., 2011, Climatic Language in Sustainable Environment Design, Volume 2, Shahid Beheshti University Press, Tehran, Iran. (persian)
11. National Standard Organization of Iran, 2011, Determination of PMV and PPD Thermal Comfort Indicators and Local Comfort Criteria, National Iranian Standard Organization Publications, Tehran, Iran. (persian)
12. ISO 7730, 2005, Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, third edition, Switzerland.
13. Nicol, F., Humphreys, M., 2010, Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251, Building and Environment, January, USA, pp 11-17.
14. Rijal, Hom B; Humphreys, Michael; Nicol, Fergus, Study on adaptive model Part 3 Development of the adaptive model for thermal comfort in Japanese houses, Architectural Institute of Japan Summary Academic Lecture Collection Summary (Kinki), 9 September 2014, Japan. pp 403-406.
15. Humphreys, M., Nicol, F., Raja, I., 2007, Field Studies of Indoor Thermal Comfort and the Progress of the Adaptive Approach, Advances in Building Energy Research, January, USA. pp 55-88
16. Ayali, H., Movahed, Kh., 2016, Determination of Optimal Orientation of Central Yard of Shiraz in Qajar Periods Based on Solar Radiation Reception, Journal of Geography and Development, Volume 14, Number 42, Zahedan, Iran, pp 161-182. (persian)