حلالهای یوتکتیک عمیق: حلالهای سبز نوظهور
محورهای موضوعی : محیط زیست ، اقتصاد ، مهندسی ، شهرسازی و توسعه پایدار
1 - دانشکده مهندسی مواد، مرکز تحقیقات مواد پیشرفته، دانشگاه صنعتی سهند، تبریز، ایران
کلید واژه: حلال, یوتکتیک عمیق, حلال سبز, توسعه پایدار,
چکیده مقاله :
توسعه پایدار و به تبع آن صنعت سبز نیازمند استفاده از حلالهای جدیدی به جای حلالهای متداول است. حلالهای متداول اغلب سمی و فرار هستند و باعث مشکلات زیست محیطی میشوند. در چند دهه اخیر حلالهای یوتکتیک عمیق توسط محققین در سرتاسر دنیا مورد توجه قرار گرفتهاند. در این مقاله، پیشینه ظهور و استفاده از حلالهای یوتکتیک عمیق از طریق اسناد منتشر شده در این زمینه مورد بررسی قرار گرفته است. حلالهای یوتکتیک عمیق ترکیبی از دو یا سه جزء ارزان و ایمن هستند که از طریق پیوند هیدروژنی ترکیب میشوند. بطوریکه یک محلول یوتکتیک با دمای ذوب پایینتر از هر کدام از اجزای ترکیبات تشکیل دهنده بدست میآید و حلال بدست آمده عموماً در دماهای کمتر از °C۱۰۰ به حالت مایع است. حلالهای یوتکتیک عمیق رفتار و خواص فیزیکی و شیمیایی مشابهی با محلولهای یونی از خود نشان میدهند. در حالی که حلالهای یوتکتیک عمیق خیلی ارزانتر و زیستسازگارتر از محلولهای یونی هستند. به دلیل مزیتهای زیاد حلالهای یوتکتیک عمیق مطالعات بسیار زیادی در زمینه تهیه و سنتز حلالها و همچنین بررسی و شناخت خواص فیزیکی و شیمیایی آنها انجام میگیرد. علاوه بر این کاربرد حلالهای یوتکتیک عمیق در زمینههای مختلف در حال بررسی بوده و استفاده از این حلالها در زمینههایی نظیر سنتز نانوذرات، الکتروپولیش، پوششدهی الکتریکی، استخراج فلزات به سرعت در حال افزایش است. به طور کلی، حلالهای یوتکتیک عمیق به دلیل خواص مثبت آنها در مقایسه با حلالهای معمولی، پتانسیل قابل توجهی برای توسعه پایدار و کاربردهای صنعت سبز از خود نشان میدهند. تحقیقات در حال انجام به منظور افزایش درک ما از این حلالها و کشف کاربردهای متنوع آنها در زمینههای مختلف ادامه دارد.
Sustainable development and the growth of green industries require the adoption of new solvents to replace traditional ones. Conventional solvents are known to be toxic and volatile and pose significant environmental challenges. In recent years, scientists around the world have extensively investigated deep eutectic solvents. This article aims to provide an overview of the history and use of deep eutectic solvents based on published literature in this field. Deep eutectic solvents consist of two or three inexpensive and safe components that are combined to form a eutectic solution with a lower melting temperature than each individual component. Consequently, these solvents typically remain liquid at temperatures below 100°C. Deep eutectic solvents exhibit similar behavior and physicochemical properties to ionic solutions but are more cost-effective and biocompatible. Due to their numerous advantages, extensive studies have been conducted on their preparation, synthesis, as well as their physical and chemical properties. Furthermore, deep eutectic solvents are being investigated for various applications, and their use in fields, such as nanoparticle synthesis, electropolishing, electrodeposition, and metal extraction, is rapidly increasing. Overall, the adoption of deep eutectic solvents offers significant potential for sustainable development and green industry applications due to their favorable properties compared to conventional solvents. Ongoing research continues to expand our understanding of these solvents and explore their diverse applications in various fields.
[1] Kumar, J.A., Krithiga, T., Manigandan, S., Sathish, S., Renita, A.A., Prakash, P., Prasad, B.S.N., Kumar, T.R.P., Rajasimman, M., Hosseini-Bandegharaei, A., Prabu, D., Crispin, S., 2021, A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach, Journal of Cleaner Production, 324, 129198.
[2] Ryu, U., Jee, S., Rao, P.C., Shin, J., Ko, C., Yoon, M., Park, K.S., Choi, K.M., 2021, Recent advances in process engineering and upcoming applications of metal–organic frameworks, Coordination Chemistry Reviews, 426, 213544.
[3] Reichardt, C., 2007, Solvents and solvent effects: An introduction. Organic Process Research & Development, 11, 105.
[4] Messerle, B.A., Wider, G., Otting, G., Weber, C., Wuthrich, K., 1989, Solvent suppression using a spin lock in 2D and 3D NMR spectroscopy with H2O solutions, Journal of Magnetic Resonance, 85, 608.
[5] Del Valle, E.M.M., 2004, Cyclodextrins and their uses: a review, Process Biochemistry, 39, 1033.
[6] Yu, D., Xue, Z., Mu, T., 2022, Deep eutectic solvents as a green toolbox for synthesis, Cell Reports Physical Science. 3, 100809.
[7] Reichardt, C., Welton, T., 2011, Solvents and solvent effects in organic chemistry, Fourth Edition, John Wiley & Sons, pp. 1-7.
[8] Scopus Database. Available at: https:// www.scopus.com.
[9] Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., Tambyrajah, V., 2001, Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains, Chemical Communications, 19, 2010.
[10] Perna, F.M., Vitale, P., Capriati, V., 2020, Deep eutectic solvents and their applications as green solvents, Current Opinion in Green and Sustainable Chemistry, 21, 27.
[11] Tang, B., Row, K.H., 2013, Recent developments in deep eutectic solvents in chemical sciences, Monatshefte für Chemie-Chemical Monthly, 144, 1427.
[12] Dai, Y., van Spronsen, J., Witkamp, G-J., Verpoorte, R., Choi, Y.H., 2013, Natural deep eutectic solvents as new potential media for green technology, Analytica Chimica Acta, 766, 61.
[13] Tomé, L.I.N., Baião, V., da Silva, W., Brett, C.M.A., 2018, Deep eutectic solvents for the production and application of new materials, Applied Materials Today, 10, 30.
[14] Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.-N., Pauli, G.F., 2018, Natural deep eutectic solvents: properties, applications, and perspectives, Journal of Natural Products, 81, 679.
[15] Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C., 2014, Natural deep eutectic solvents – Solvents for the 21st century, ACS Sustainable Chemistry & Engineering, 2, 1063.
[16] El Achkar, T., Greige-Gerges, H., Fourmentin, S., 2021, Basics and properties of deep eutectic solvents: a review, Environmental chemistry letters, 19, 3397.
[17] Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., 2020, Deep eutectic solvents: A review of fundamentals and applications, Chemical Reviews, 121, 1232.
[18] Smith, E.L., Abbott, A.P., Ryder, K.S., 2014, Deep eutectic solvents (DESs) and their applications, Chemical Reviews, 114, 11060.
[19] Liao, H.G., Jiang, Y.X., Zhou, Z.Y., Chen, S.P., Sun, S.G., 2008, Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis, Angewandte Chemie International Edition, 47, 9100.
[20] Wei, L., Fan, Y.-J., Tian, N., Zhou, Z.-Y., Zhao, X.-Q., Mao, B.-W., Sun, S.-G., 2012, Electrochemically shape-controlled synthesis in deep eutectic solvents: A new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity, The Journal of Physical Chemistry C, 116, 2040.
[21] Mohan, S., Kanagaraj, D., Sindhuja, R., Vijayalakshmi, S., Renganathan, N.G., 2001, Electropolishing of stainless steel-a review, Transactions of the IMF, 79, 140.
[22] Abbott, A.P., Capper, G., McKenzie, K.J., Ryder, K.S., 2006, Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid, Electrochimica Acta, 51, 4420.
[23] Karim, W.O., Abbott, A.P., Cihangir, S., Ryder, K.S., 2018, Electropolishing of nickel and cobalt in deep eutectic solvents, Transactions of the IMF, 96, 200.
[24] Abbott, A.P., Dsouza, N., Withey, P., Ryder, K.S., 2012, Electrolytic processing of superalloy aerospace castings using choline chloride-based ionic liquids, Transactions of the IMF, 90, 9.
[25] Abbott, A.P., Capper, G., McKenzie, K.J., Glidle, A., Ryder, K.S., 2006, Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy, Physical Chemistry Chemical Physics, 8, 4214.
[26] Smith, E.L., 2013, Deep eutectic solvents (DESs) and the metal finishing industry: where are they now?, Transactions of the IMF, 91, 241.
[27] Popescu, A.-M.J., Constantin, V., Olteanu, M., Demidenko, O., Yanushkevich, K., 2011, Obtaining and structural characterization of the electrodeposited metallic copper from ionic liquids, Revista de Chimie, 62, 626.
[28] Abbott, A.P., El Ttaib, K., Ryder, K.S., Smith, E.L., 2008, Electrodeposition of nickel using eutectic based ionic liquids, Transactions of the IMF, 86, 234.
[29] Dutra, A.J.B., Paiva, P.R.P., Tavares, L.M., 2006, Alkaline leaching of zinc from electric arc furnace steel dust, Minerals Engineering, 19, 478.
[30] Oustadakis, P., Tsakiridis, P.E., Katsiapi, A., Agatzini-Leonardou, S., 2010, Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diluted sulphuric acid, Journal of Hazardous Materials, 179, 1.
[31] Youcai, Z., Stanforth, R., 2000, Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium, Journal of Hazardous Materials, 80, 223.
[32] Li, H., Wang, Y., Cang, D., 2010, Zinc leaching from electric arc furnace dust in alkaline medium, Journal of Central South University of Technology, 17, 967.
[33] Abbott, A.P., Collins, J., Dalrymple, I., Harris, R.C., Mistry, R., Qiu, F., Scheirer, J., Wise, W.R., 2009, Processing of electric arc furnace dust using deep eutectic solvents, Australian Journal of Chemistry, 62, 341.