همزمان سازی سیستم های آشوبی نامعین با استفاده از سطح لغزشی PID غیرخطی مرتبه کسری
محورهای موضوعی : مهندسی برق ( الکترونیک، مخابرات، قدرت، کنترل)محمد رسولی 1 , آصف زارع 2 , نرگس شفاعی 3 , حسن یعقوبی 4
1 - دانشکده مهارت و کارآفرینی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران
2 - Department of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
3 - دانشگاه آزاد اسلامی
4 - گروه مهندسی برق، واحد گناباد، دانشگاه آزاد اسلامی، گناباد، ایران
کلید واژه: سیستم آشوبی مرتبه کسری , همزمان سازی , کنترلر لغزشی , تطبیقی مقاوم,
چکیده مقاله :
در این تحقیق روشی برای همزمان سازی مقاوم سیستم های مرتبه کسری آشوبناک ارائه شده است. سیستم های مورد بررسی در این مقاله دارای تاخیر زمانی نامعلوم ، اغتشاش و عدم قطعیت با کران نامعلوم می باشند. وجود تاخیر زمانی پیچیدگی مسئله کنترل را افزایش داده و مجهول بودن آن پیچیدگی پایدار سازی را افزایش می دهد. کران های عدم قطعیت و اغتشاش بعنوان مجهول وارد سیستم کنترل شده و کنترل کننده تطبیقی حاصله از تخمین کران های عدم قطعیت و اغتشاش بهره می برد. برای این منظور ابتدا یک سطح لغزش مبتنی بر تناسبی انتگرال گیر مشتقگیر غیرخطی مرتبه کسری ارائه شده، سپس یک مکانیزم تطبیقی مقاوم جهت همزمانسازی سیستم پایه و پیرو ارائه شده است. با انتخاب تابع لیاپانوف مناسب ضمن اثبات پایداری مکانیزم پیشنهادی و تضمین همگرایی خطای همزمانسازی به سمت صفر ، قواعد بروزرسانی جهت تخمین کران اغتشاش، کران عدم قطعیت و تاخیرهای زمانی سیستم استخراج شده است. رهیافت پیشنهادی بمنظور همزمان سازی سیستم مرتبه کسری جنسیوتسی با پارامترهای متغییر با زمان اعمال شده است که نتایج شبیه سازی عملکرد مناسب رهیافت ارائه شده را بیان می کند. . . . . . . . . . . . . . . . . . . . .
In this research, a method for robust synchronization of chaotic fractional order systems is presented. The systems investigated in this article have an unknown time delay, disturbance and uncertainty with an unknown limit. The presence of time delay increases the complexity of the control problem and its unknownness increases the stabilization complexity. Uncertainty and disturbance limits are entered into the control system as unknowns and the adaptive controller uses the estimation of uncertainty and disturbance limits. For this purpose, first, a sliding surface based on the proportionality of the fractional-order non-linear derivative-integrator is presented, then a robust adaptive mechanism for synchronizing the base and follower systems is presented. By choosing the appropriate Lyapunov function while proving the stability of the proposed mechanism and guaranteeing the convergence of the synchronization error to zero, the update rules have been extracted to estimate the disturbance limit, uncertainty limit and time delays of the system. The proposed approach has been applied in order to synchronize the fractional order system with time-varying parameters, which shows the simulation results of the appropriate performance of the proposed approach. . . .. . . . .. . . . . . . . . . . .
References [1] K. Diethelm, “A fractional calculus based model for the simulation of an outbreak of dengue fever,” (in En;en), Nonlinear Dyn, vol. 71, no. 4, pp. 613–619, 2013, doi: 10.1007/s11071-012-0475-2.
[2] R. Caponetto, G. Di Pasquale, S. Graziani, E. Murgano, A. Pollicino, and C. Trigona, “Green Fractional Order Elements Based on Bacterial Cellulose and Ionic Liquids,” in 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2020. [Online]. Available: http://dx.doi.org/10.1109/i2mtc43012.2020.9128828
[3] “The role of fractional calculus in modeling biological phenomena: A review,” Communications in Nonlinear Science and Numerical Simulation, vol. 51, pp. 141–159, 2017, doi: 10.1016/j.cnsns.2017.04.001.
[4] G. T. Oumbé Tékam, C. A. Kitio Kwuimy, and P. Woafo, “Analysis of tristable energy harvesting system having fractional order viscoelastic material,” Chaos, vol. 25, no. 1, p. 13112, 2015, doi: 10.1063/1.4905276.
[5] Mohammad Pourmahmood Aghababa, “Fractional modeling and control of a complex nonlinear energy supply-demand system,” Complexity, vol. 20, no. 6, pp. 74–86, 2015, doi: 10.1002/cplx.21533.
[6] SH Hosseinnia, RL Magin, BM Vinagre, “Chaos in fractional and integer order NSG systems,” Signal Processing, vol. 107, pp. 302–311, 2015, doi: 10.1016/j.sigpro.2014.06.021.
[7] Q Li, S Liu, Y Chen, “Combination event-triggered adaptive networked synchronization communication for nonlinear uncertain fractional-order chaotic systems,” Applied Mathematics and Computation, vol. 333, pp. 521–535, 2018, doi: 10.1016/j.amc.2018.03.094.
[8] Xiuxia Yin, Dong Yue, and Songlin Hu, “Consensus of fractional-order heterogeneous multi-agent systems,” IET Control Theory & Applications, vol. 7, no. 2, pp. 314–322, 2013, doi: 10.1049/iet-cta.2012.0511.
[9] M. Ö. Efe, “Fractional Order Systems in Industrial Automation—A Survey,” IEEE Trans. Ind. Inf., vol. 7, no. 4, pp. 582–591, 2011, doi: 10.1109/tii.2011.2166775.
[10] Y. Ding, Z. Wang, and H. Ye, “Optimal Control of a Fractional-Order HIV-Immune System With Memory,” IEEE Trans. Contr. Syst. Technol., vol. 20, no. 3, pp. 763–769, 2012, doi: 10.1109/tcst.2011.2153203.
[11] Mouna Ben Smida, Anis Sakly, Sundarapandian Vaidyanathan, and Ahmad Taher Azar, “Control-Based Maximum Power Point Tracking for a Grid-Connected Hybrid Renewable Energy System Optimized by Particle Swarm Optimization,” in Research Anthology on Clean Energy Management and Solutions: IGI Global, pp. 353–384. [Online]. Available: https://www.igi-global.com/chapter/control-based-maximum-power-point-tracking-for-a-grid-connected-hybrid-renewable-energy-system-optimized-by-particle-swarm-optimization/286475
[12] W Cai, P Wang, J Fan, “A variable-order fractional model of tensile and shear behaviors for sintered nano-silver paste used in high power electronics,” Mechanics of Materials, vol. 145, p. 103391, 2020, doi: 10.1016/j.mechmat.2020.103391.
[13] P. B. P Muthukumar, Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography, 2013. [Online]. Available: https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s11071-013-1032-3&casa_token=-sywiegxde0aaaaa:krtvcaerub3attgl0rjwjxoprgqsko6vhxzbibofx7ud70ypebvwyzxuzwfq0jmbshojx5bunb6an-q
[14] S. Balochian, A.K. Sedigh, A. Zare, “Variable structure control of linear time invariant fractional order systems using a finite number of state feedback law,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1433–1442, 2011, doi: 10.1016/j.cnsns.2010.06.030. [15] A. E. AE Matouk, Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/s0893965913002954
[16] Chuang Li, Jingcheng Wang, Junguo Lu, and Yang Ge, “Observer-based stabilisation of a class of fractional order non-linear systems for 0 < α <2 case,” IET Control Theory & Applications, vol. 8, no. 13, pp. 1238–1246, 2014, doi: 10.1049/iet-cta.2013.1082.
[17] Z Odibat, “A note on phase synchronization in coupled chaotic fractional order systems,” Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 779–789, 2012, doi: 10.1016/j.nonrwa.2011.08.016.
[18] JG Liu, “A novel study on the impulsive synchronization of fractional-order chaotic systems,” Chinese Phys. B, vol. 22, no. 6, p. 60510, 2013, doi: 10.1088/1674-1056/22/6/060510.
[19] P. Muthukumar, P. Balasubramaniam, and K. Ratnavelu, “Synchronization and an application of a novel fractional order King Cobra chaotic system,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 24, no. 3, 2014, doi: 10.1063/1.4886355.
[20] L Pan, Z Guan, L Zhou, “CHAOS MULTISCALE-SYNCHRONIZATION BETWEEN TWO DIFFERENT FRACTIONAL-ORDER HYPERCHAOTIC SYSTEMS BASED ON FEEDBACK CONTROL,” International Journal of Bifurcation and Chaos, 2013, doi: 10.1142/S0218127413501460.
[21] Mohammad Pourmahmood Aghababa, “Design of hierarchical terminal sliding mode control scheme for fractional-order systems,” IET Science, Measurement & Technology, vol. 9, no. 1, pp. 122–133, 2015, doi: 10.1049/iet-smt.2014.0039.
[22] Z Wang, X Huang, J Lu, “Sliding mode synchronization of chaotic and hyperchaotic systems with mismatched fractional derivatives,” Transactions of the Institute of Measurement and Control, 2013, doi: 10.1177/0142331212468374.
[23] D. Chen, R. Zhang, J. C. Sprott, H. Chen, and X. Ma, “Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control,” Chaos, vol. 22, no. 2, 2012, doi: 10.1063/1.4721996.
[24] Hao Shen, Xiaona Song, and Zhen Wang, “Robust fault-tolerant control of uncertain fractional-order systems against actuator faults,” IET Control Theory & Applications, vol. 7, no. 9, pp. 1233–1241, 2013, doi: 10.1049/iet-cta.2012.0822.
[25] M. Rasouli, A. Zare, M. Hallaji, and R. Alizadehsani, “The Synchronization of a Class of Time-Delayed Chaotic Systems Using Sliding Mode Control Based on a Fractional-Order Nonlinear PID Sliding Surface and Its Application in Secure Communication,” Axioms, vol. 11, no. 12, p. 738, 2022, doi: 10.3390/axioms11120738.
[26] A. A. Kekha Javan et al., “Design of Adaptive-Robust Controller for Multi-State Synchronization of Chaotic Systems with Unknown and Time-Varying Delays and Its Application in Secure Communication,” Sensors, vol. 21, no. 1, p. 254, 2021, doi: 10.3390/s21010254.
[27] El Abed Assali, “Predefined-time synchronization of chaotic systems with different dimensions and applications,” Chaos, Solitons & Fractals, vol. 147, p. 110988, 2021, doi: 10.1016/j.chaos.2021.110988.
[28] N. Tino and P. Niamsup, “Finite-Time Synchronization Between Two Different Chaotic Systems by Adaptive Sliding Mode Control,” Front. Appl. Math. Stat., vol. 7, p. 589406, 2021, doi: 10.3389/fams.2021.589406.
[29] S. K. MP Aghababa, “Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique,” Applied Mathematical Modelling, vol. 35, no. 6, pp. 3080–3091, 2011, doi: 10.1016/j.apm.2010.12.020.
[30] L dos Santos Coelho, DL de Andrade Bernert, “A modified ant colony optimization algorithm based on differential evolution for chaotic synchronization,” Expert Systems with Applications, vol. 37, no. 6, pp. 4198–4203, 2010, doi: 10.1016/j.eswa.2009.11.002.
[31] M. Hui, C. Wei, J. Zhang, H. Ho-Ching Iu, R. Yao, L. Bai, “Finite-time synchronization of fractional-order memristive neural networks via feedback and periodically intermittent control,” Communications in Nonlinear Science and Numerical Simulation, vol. 116, p. 106822, 2023, doi: 10.1016/j.cnsns.2022.106822.
[32] W. Pan, T. Li, M. Sajid, S. Ali, and L. Pu, “Parameter Identification and the Finite-Time Combination–Combination Synchronization of Fractional-Order Chaotic Systems with Different Structures under Multiple Stochastic Disturbances,” Mathematics, vol. 10, no. 5, p. 712, 2022, doi: 10.3390/math10050712.
[33] J Jiang, D Cao, H Chen, “sliding mode control for a class of variable-order fractional chaotic systems,” Journal of the Franklin Institute, vol. 357, no. 15, pp. 10127–10158, 2020, doi: 10.1016/j.jfranklin.2019.11.036.