The Influence of Boron Additions on Microstructure and Dry Sliding Wear of Cast FeAl-Based Alloys
Subject Areas : Journal of Environmental Friendly MaterialsM Paryab 1 , M Ghanbari Haghighi 2
1 - Mining and Metallurgical Engineering Department, Amirkabir University, Tehran, Iran
2 - Advanced Materials Engineering Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
Keywords:
Abstract :
In this research, the influence of boron content on microstructure and dry sliding wear resistance of as-cast FeAl-based alloys was evaluated. The alloying process was carried out using vacuum induction melting and four specimens having different boron content of 0, 0.1, 0.5 and 1 at% were produced. As-cast specimens then were teste using standard pin-on-disk wear tester machine in 20 and 40 N applied load and a distance of 1000 m according to ASTM G99 standard. The surface of worn specimens then were examined using scanning electron microscope to determine the dominated wear mechanism. The investigations revealed that at lower applied load of 20 N, the governing wear mechanism is oxidative wear and for higher applied load of 40 N, delamination is the governing mechanism. Increasing the boron content increases the hardness as well as the wear resistance of the alloy which is related to the formation of Fe2B compounds in the material and increasing the hardness.
[1] Z. Zhang and W. Liu, Mater. Sci. Eng., A, 423, (2006), 343.
[2] J. Wang, , J. Xing, Z. Qiu, X. Zhi and L. Cao, J. Alloys Compd., 488, (2009), 117.
[3] K. Han, I. Ohnuma and R. Kainuma, J. Alloys Compd., 668, (2016), 97.
[4] G. Sauthoff, Intermetallics, VCH Verlagsgesellschaft, Weinheim, 1995.
[5] W. C. Luu amd J. K. Wu, Mater. Chem. and Phys., 70, (2001), 236.
[6] J. H. Westbrook and R. L. Fleischer, Intermetallic Compounds, Chichester, John Wiley & Sons Ltd, 2. (1994), 199.
[7] D. D. Risanti and G. Sauthoff, Intermetallics, 19, (2011), 1727.
[8] D. G. Morris and M. A. Muñoz-Morris, Mater. Sci. Eng., A, 462, (2007), 45.
[9] M. Palm, Intermetallics, 13, (2005), 1286.
[10] R. Krein, A. Schneider, G. Sauthoff and G. Frommeyer, Intermetallics, (2007), 15, 1172.
[11] P. Kratochvíl, P. Kejzlarb, R. Krála and V. Vodicková, Intermetallics, 20, (2012), 39.
[12] P. Kratochvíl, F. Dobeš, J. Pešička, P. Málek, J. Buršík, V. Vodičková and P. Hanus, Mater. Sci. Eng. A, 548, (2012), 175.
[13] X. Li, P. Prokopčáková and M. Palm, Micro. Mater. Sci. Eng., A, 611, (2014), 234.
[14] F. Stein, M. Palm and G. Sauthoff, Intermetallics, 13, (2005), 1275.
[15] P. Kratochvíl, P. Málek, M. Cieslar, P. Hanus, J. Hakl and T. Vlasák, Intermetallics, 15, (2007), 333.
[16] A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, K. Sztwiertnia, G. Sauthoff and U. Messerschmidt, Mater. Sci. Eng., A, 380, (2004), 9.
[17] P. Lejček and A. Fraczkiewicz, Intermetallics, 11, (2003), 1053.
[18] J. W. Cohron, Y. Lin, R. H. Zee and E. P. George, Acta Mater., 46, (1998), 6245.
[19] F. Stein, A. Schneider and G. Frommeyer, Intermetallics, 11, (2003), 71.
[20] D. A. Alven and N. S. Stoloff, Mater. Sci. Eng., A, (1997), 239-240, 362-368.
[21] D. A. Alven and N. S. Stoloff, Scr. Mater., 34, 1996, 1937.
[22] Y. D. Huang, W. Y. Yang and Z. Q. Sun, Intermetallics, 9, (2001), 119.
[23] L. Anthonya and B. Fultz, Acta Metall. Mater., (1995), 43, 3885.
[24] D. G. Morris and M. A. Muñoz-Morris, Intermetallics, 13, 2005, 1269.
[25] H. Xiao and I. Baker, Scr. Metall. Mater., 28, (1993), 1411.
[26] J. T. Guo, O. Jin, W. M. Yin and T. M. Wang, Scr. Metall. Mater. (1993), 29, 783.
[27] K. Yoshimi, S. Hanada and M. H. Yoo, Acta Metall. Mater., (1995), 43, 4141.
[28] M. Zamanzade and A. Barnoush, Proc. Mater. Sci., (2014), 3, 2016.
[29] M. A. Martin, J. A. Fenske, S. L. Liu, P. Sofronis and I. M. Robertson, Acta Mater.,(2011), 59, 1601.