تبیین مدل مدیریت ارتباط با مشتریان با استفاده از سیستم دینامیک
محورهای موضوعی : مدیریتسمیه حسینی 1 , محمدرضا معتدل 2 , عباس طلوعی اشلقی 3
1 - دانشجوی دکتری، گروه مدیریت فناوری اطلاعات، واحد تهران مرکزی، تهران، ایران
2 - دانشیار، گروه مدیریت صنعتی، واحد تهران مرکزی، تهران، ایران (عهده دار مکاتبات)
3 - استاد، گروه مدیریت، واحد علوم و تحقیقات، تهران، ایران
کلید واژه: مدیریت ارتباط با مشتریان , مدل سازی پویا , سیستم دینامیک,
چکیده مقاله :
مدیریت کارا و اثربخش روابط مشتریان، باعث افزایش رضایت و حفظ مشتریان میشود. مدیریت ارتباط با مشتری، به سازمانها در ارزیابی سودآوری و وفاداری مشتریان به کمک معیارهایی مانند خریدهای تکراری، پول خرج شده و دوامپذیری، کمک مینماید. ﻫﺪف اﺻﻠﻲ این پژوهش مدل سازی پویای ارتباط با مشتریان و تحلیل دینامیکی این مدل بوده است. تحقیق حاضر از حیث هدف کاربردی و از حیث روش پیمایشی با رویکرد توسعه مدل است. بازه زمانی تحقیق پنج سال (1396-1400) است. برای این منظور، اطلاعات شاخصهای 33 عامل موثر بر مزیت رقابتی در بانک تجارت وارد مدلهای میانگین گیری بیزین (BMA )، مدل میانگین متحرک پویا با پارامترهای قابل تغییر طی زمان( TVP-DMA ) ومدل گزینشی پویا با پارامترهای قابل تغییر طی زمان (TVP-DMS ) شد. بر اساس میزان خطا، مدل BMA از بالاترین دقت برخوردار بود. پس از برآورد مدل، 8 متغیر اصلی شناسایی گردید. که عبارت از: مانده حساب بلند مدت؛ میزان استفاده از موبایل بانک؛ میزان استفاده از اینترنت بانک؛ مشتریان حقیقی؛ مشتریان حقوقی؛ ویژه یا عادی بودن مشتری؛ نوع شغل و تحصیلات. این 8 متغیر اصلی شناسایی شده در مدل پویا وارد گردیده و پس از آن مدل بر اساس آزمون های کفایت مرز، ارزیابی ساختار، خطای یکپارچگی و تحلیل حساسیت اعتبار سنجی گردید.
Efficient and effective customer relationship management increases customer satisfaction and retention. Customer relationship management helps organizations evaluate profitability and customer loyalty using criteria such as repeat purchases, money spent, and durability. The main goal of this research was the dynamic modeling of communication with customers and the dynamic analysis of this model. The current research is applied in terms of purpose and in terms of survey method with model development approach. The time frame of the research is five years (2017-2021). For this purpose, information on the indices of 33 factors affecting competitive advantage in Tejarat Bank were entered into Bayesian averaging models (BMA), dynamic moving average model with parameters that can be changed over time (TVP-DMA) and dynamic selection model with parameters that can be changed over time (TVP). -DMS) Based on the error rate, the BMA model had the highest accuracy. After estimating the model, 8 main variables were identified. which consists of: long-term account balance; the amount of use of mobile bank; the amount of internet bank usage; real customers; legal clients; special or normality of the customer; Type of job and education. These 8 main identified variables were entered into the dynamic model and then the model was validated based on boundary adequacy tests, structure evaluation, integration error and sensitivity analysis.
[1] بهروان, مجید, معتدل, محمدرضا, طلوعی اشلقی, عباس, رادفر, رضا. طراحی سیستم توصیهگر محصولات شوینده بر مبنای تحلیل احساسات فازی. پژوهش های نوین در تصمیم گیری, 1400; 6(4): 35-53.
[2] طالبی، کامبیز، ایمانی پور، نرگس، شیخی ئیلانلو، حمید، سجادی، سید مجتبی (1399)، روششناسی پویایی سیستمهای نرم یک رویکرد سیستمی ترکیبی در پژوهشهای کارآفرینی، حوزه و دانشگاه روششناسی علوم انسانی، دوره 26 شماره 104، صص 46-29، قابل بازیابی از: doi 10.30471mssh.2020.5440.1882
[3] یگانگی سید کامران, ابراهیمی, مریم. (1400). مدل سازی مدیریت الکترونیکی ارتباط با مشتریان ، مطالعه موردی : سیستم های بانکی، فصلنامه مطالعات مدیریت و توسعه پایدار, 1(4), pp. 1-28. doi: 10.30495/msds.2022.1949842.1032
[4] کریمی، محمد، طلوعی اشلقی، عباس، پیله وری سلماسی، نازنین، و رادفر، رضا. (1400). ارائه مدل پویای فازی برای تدوین راهبرد استوار طراحی خدمات در شرایط عدم قطعیت (مورد مطالعه: خدمات بانکی). مدیریت توسعه فناوری، 9(3)، 37-71. SID. https://sid.ir/paper/1040264/fa
[5] Andrievskaya Irina و Semenova Maria. (2016). Does banking system transparency enhance bank competition? Cross-country evidence. Journal of financial stability، 23: 33-50.
[6] Cvijović Jelena؛ Kostić-Stanković Milica و Reljić Marija. (2017). Customer relationship management in banking industry: Modern approach. Industrija، 45(3).
[7] Kebede Alemu Muleta و Tegegne Zewdu Lake. (2018). The effect of customer relationship management on bank performance: In context of commercial banks in Amhara Region, Ethiopia. Cogent Business & Management، 5(1): 1499183.
[8] Li Yangfan؛ Huang Jinghua و Song Tingting. (2019). Examining business value of customer relationship management systems: IT usage and two-stage model perspectives. Information & Management، 56(3): 392-402.
[9] Koop, G. and D. Korobilis, UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so? Economic Modelling, 2011. 28(5): p. 2307.
[10] Stock, J.H. and M.W. Watson, Forecasting with many predictors. Handbook of economic forecasting, 2006. 1: p. 515.