بررسی اثر میکوریزGlomus mosseae و براسینواستروئید بر مکانیسم فتوسنتز آنیسون (Pimpinella anisum L.) تحت شرایط تنش کادمیوم
محورهای موضوعی : زیست شناسی سلولی تکوینی گیاهی و جانوری ، تکوین و تمایز ، زیست شناسی میکروارگانیسمسپیده حاج باقری 1 , حسین عباسپور 2 * , شکوفه انتشاری 3 , علیرضا ایرانبخش 4
1 - گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد دامغان، دامغان، ایران
2 - گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد دامغان، دامغان، ایران
3 - گروه زیست شناسی، دانشگاه پیام نور، ایران
4 - گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
کلید واژه: آنیسون, کلرید کادمیوم, براسینواستروئید, میکوریز Glomus mosseae,
چکیده مقاله :
عناصر سنگین از مهمترین آلایندههای محیطی هستند و سمیت آنها به دلایل اکولوژیکی، تکاملی، تغذیهای و محیطی مشکل بزرگی بهشمار میرود. بسیاری از تحقیقات نشان داده اند که تلقیح گیاهان با قارچ میکوریزی یا استفاده از هورمون براسینواستروئید مقاومت بسیاری از گیاهان را نسبت به فلزات سنگین افزایش میدهد. در این مطالعه تاثیر میکوریز Glomus mosseae و 24-اپیبراسینولید (10-6 میکرومولار) بر مکانیسم فتوسنتز و مقاومت گیاه دارویی آنیسون نسبت به تنش ناشی از کلرید کادمیوم (0، 100، 200 و 800 ppm) مورد بررسی و مقایسه قرار گرفت. نتایج نشان داد که کادمیوم باعث کاهش درصد آغشتگی میکوریزی ریشه، کلروفیل a، کلروفیل b و کلروفیل کل و کاهش حدواسطهای مسیر بیوسنتز کلروفیل شامل پروتوپورفیرین IX، منیزیم پروتوپورفیرین IX، پروتوکلروفیلید، کلروفیلید a و کلروفیلیدb و کاهش کاروتنوئید در گیاه آنیسون شد. پیش تیمار گیاهان با براسینواستروئید، تلقیح گیاهان با قارچ میکوریز Glomus mosseae و اثر توام Glomus mosseae×براسینواستروئید باعث افزایش میزان این ترکیبات تحت غلظتهای 100 و 200 ppm کلرید کادمیوم گردید. بنابراین می توان نتیجه گرفت که براسینواسترویید و قارچ میکوریزی در این غلظتها بر مکانیسم فتوسنتز و مقاومت در این گیاه نقش مثبت داشته و باعث مقاومت این گیاه در برابر سمیت ناشی از کادمیوم در این گیاه میشود.
Heavy metals are important environmental pollutants because of their toxicity, ecological, evolutionary, environmental, nutritional, and is considered as a major problem. Many studies have shown that plants inoculated with mycorrhizal fungi and the use of hormone Brassinosteroids increased resistance of plants to heavy metals. In this study, the effect of mycorrhiza Glomus mosseae and 24-epibrassinolid (10-6 µM) on anise resistance to the stress of cadmium chloride (0, 100, 200 and 800 ppm) were compared. The results showed that cadmium reduced percentage of root mycorrhizal colonization, chlorophyll a, chlorophyll b and total chlorophyll, chlorophyll biosynthesis pathway intermediates containing protoporphyrin IX, magnesium protoporphyrin IX, Protochlorophilid, chlorophilid a and chlorophilid b and carotenoids in the anise plant. Plants pretreatment with brassinosteroid, plants inoculated with mycorrhizal fungi Glomus mosseae and interaction brassinosteroid and Glomus mosseae increased the amount of the compounds of cadmium chloride concentrations were 100 and 200 ppm. Therefore it can be concluded that Brassinosteroids and mycorrhizal fungi in the this concentrations on plant resistance and mechanisms of photosynthesis have a positive role and plant resistance to cadmium toxicity in this plant.
[1] امیدبیگی، ر. 1385. تولید و فرآوری گیاهان دارویی. جلد 3، انتشارات آستان قدس رضوی. 397 صفحه.
[2] Al-Karaki G.N. 2000, Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza Journal, 10:51-54.
[3] Alam M.M., Hayat S,. Ali, B., Ahmad A. 2007, Effect of 28 homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica, 45: 139–142.
[4] Asghari H.R. 2008, Vesicular_arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculation subterranean clover (Trifolium subterraneum) seedling. International Journal of Plant Production, 2(3): 243-256.
[5] Ashwani K., Satyawati SH., Saroj M. 2010, Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation, 29(3): 297-306.
[6] Bheemareddy V.S. 2013, Impact of Cadmium Phytotoxicity on Photosynthetic Rate and Chlorophyll Content in Triticum aestivum L. DWR 225 Variety. Middle-East Journal of Scientific Research, 17 (9): 1209-1212.
[7] Chandler J.W., Cole M., Flier A., Werr W. 2009, BIM1, a bHLH protein involved in brassinosteroid signaling, controls Arabidopsis embryonic pattering via interaction with dornroschen and dornroschen-like. Plant Molecular Biology,69: 57-68.
[8] Colla G., Rouphael Y., Cardaleri M., Tullio M., Mario Rivera C., Rea E. 2008, Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Boil Fertile Soils Journal, 44: 501-509.
[9] Enteshari SH., Delavar K. 2011, Enhancing effect of Methyl jasmonate on antioxidative capacity of Bunium persicum under Cadmium stress. Planta Medica, 77 – 89.
[10] Enteshari. SH., Hajbagheri. S. 2011, The effects of mycorrhizal fungi on some physiological characteristics and in salt stressed Ocimum basilicum L. Journal of Plant Physiology, (4): 215-222.
[11] Garg N. Bhandari P. 2012, Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. International Journal of Phytoremediation, 14(1): 62-74.
[12] Giri B., Mukerji K.G. 2004, Mycorrhizal inoculants alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14:307-312.
[13] Gubrelay U., Agnihotri K., Singh G., Kaur R., Sharma R. 2013, Effect of heavy metal Cd on some physiological and biochemical parameters of Barley (Hordeum vulgare L.). International Journal of Agriculture and Crop Sciences, 5 (22): 2743-2751.
[14] Guillermo O., Karina B., Alcira B., Maria L. 2007, Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. BioMetals, 20: 841-851
[15] Hanlon M.T., Coenen C. 2011, Genetic evidence for auxin involvement in arbuscular mycorrhizal initiation. New Phytologist, 189:701–709.
[16] Hayat A., Ahmad T. 2007, Salicylic acid. A plant hormone, salicylic acid: biosynthesis, metabolism and physiological role in plants.
[17] Hediji H., Djebali W., Cabasson C., Maucourt M., Baldet P., Bertrand A., Boulila Zoghlami L., Deborde C., Moing A., Brouquisse R., Chaïbi W., Gallusci P. 2010, Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicology and Environmental Safety, 73(8): 1965-1974.
[18] Hewitt E.J. 1966, Sand and water culture methods used in the study of plant nutrition. Tech. Commun. 22, Commonwealth Bureaux of Hort. and Plantation Crops, East Malling, England.
[19] Jain A., Poling M.D., Karthikeyan A.S., Blakeslee J.J., Peer W.A., Titapiwatanakun B., Murphy A.S., Raghothama K.G. 2007,Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol, 144:232-247.
[20] Jaleel C.A., Manivannan P., Kishorekumar A., Sankar B., Gopi R., Somasundaram R., Panneerselvam R. 2007, Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids and Surfaces Biointerfaces, 59(2): 150–157.
[21] Jamalabad KH., Khara J. 2008, The effect of arbuscular mycorrhizal fungi Glomus intraradices on some growth and physiological parameters in wheat (cv.AZAR2) plants under cadmium toxicity. Iranian Journal of Biology, 21(2): 216-230.
[22] Jeliazkova E., Craker L.E., Xing B.S. 2003, Seed germination of anise, caraway, and fennel in heavy metal contaminated solutions. Journal Herbs Spices Med,10: 83-93.
[23] Jutta L.M. 2000, Hormonal Balance in Plants during Colonization by Mycorrhizal Fungi. Arbuscular Mycorrhizas: Physiology and Function, 263-285.
[24] Liu G.Y., Zhang Y.X., Chai T.Y. 2011, Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Reports, 30: 1067–1076.
[25] Liu L., Sun H., Chen J., Zhang Y., Li D., Li C. 2014, Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton (Gossypium hirsutum L.). Plant Omics Journal, 7(4): 284-290.
[26] Martin F., Tuskan G.A., Difasio S.P., Lammers P., Newcombe G., podia G.K. 2004, Symbiotic sequencing for the Populus mesocosm. New Phytologist, 161: 330-335.
[27] Meeta J., Monika P., Priyanka G., Rekha G. 2007, Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments: Role of 2-oxoglutarate. India Journal of Experimental Biology, 45: 385-389.
[28] Morsch V.M., Schetinger M.R.C., Martins A.F., Rocha J.B.T. 2002. Effects of cadmium, lead, mercury and zinc on δ-aminolevulinic acid dehydratase activity from radish leaves, Biology Plant, 45:85-89.
[29] Ogweno J.O., Song X.S., Shi K., Hu W.H., Mao W.H., Zhou Y.H., Yu J.Q., Nogues S. 2008, Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27:49-57.
[30] Pawlowska T., Charvat I. 2004, Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 70: 6643-6649.
[31] Porra R.J., Thompson W.A., Kreidemann P.E. 1989, Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta, 975: 384–394.
[32] Prasad D.D.K., Prasad A.R.K. 1990, Porphyrin metabolism in lead and mercury treated bajra (Pennisetum typhoideum) seedlings. Journal of Biosciences, 15(4):271-279.
[33] Prasad M.N.V., Freitas H.M.D. 2003, Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron Journal Biotechnol, 93(1):285–321.
[34] Rajapakes G., Miler J. 1992, Methods of studying VAM root colonization and related root physical properties. Methods in microbiology, V:24.ISBN:0-12-521524.
[35] Romero-Puertas M.C., Palma J.M., Gomez M., del Rio L.A., Sandalio L.M. 2002, Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ, 25: 677–686.
[36] Rupam, K., and Bhatnagar, A.K. 2007, Attenuation of cadmium toxicity in mycorrhizal celery (Apium graveolens L.). World Journal of Microbiology and Biotechnology, 23: 1083-1089.
[37] Sanita L., Gabbrielli R.1999, Response to Cadmium in higher plants-review. Environmental and Experimental Botany, 41: 105-130.
[38] Saxena D.K., Saiful-Arfeen M. 2009, Effect of Cu and Cd on oxidative enzymes and chlorophyll content of Moss Racomitrium crispulum. Taiwania, 54: 365-374.
[39] Shaibur M., imamul S.M., Huq N., Kawai S. 2008, Effect of pH on on Arsenic Toxicity in Barley Grown in Water Culture. Soil Science & Plant Nutrient, 54: 9-25.
[40] Sharma P., Bhardwaj R., Arora N., Arora K. 2007, Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings. Brazilian Journal of Plant Physiology, 19(3): 203-210.
[41] Silva S. 2012, Aluminium Toxicity Targets in Plants. A review. Journal of Botany, 10: 1-8.
[42] Tangahu B.V., Abdullah S.R., Basri H., Idris M., Anuar M., Mukhlisim M. 2011, A review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 1-31.
[43] Turk M.A., Assaf T.A., Hameed K.M., Al-Tawaha A.M. 2006, Significance of mycorrhizae. World Journal of Agricultural Sciences, 2(1): 16-20.
[44] Upadhyaya H., Panda S.K., Bhattacharjee M.K., Dutta S. 2010, Role of arbuscular mycorrhiza in heavy metal tolerance in plants: Prospects for phytoremidiation. Journal of Phytology, 2(7): 16-27.
[45] Vassilev A., Koleva L., Berova M., Stoeva N.2007, Development of a plant test system for evaluation of the toxicity of metal contaminated soils. I. sensitivity of plant species to heavy metal stress. Journal of Central European Agriculture, 8(2): 135-140.
[46] Vijayaragavan M., Prabhakar C., Sureshkumar J., Natarajan A., Vijayarengan P., Sharavan S. 2011, Toxic effect of cadmium on seed germination growth and biochemical content of cowpea (Vigna unguiculata L.). Journal Rankings on Multidisciplinary, 1(5): 01-06.
[47] Xue Z.C., Gao H.Y., Zhang L.T. 2013, Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biologia Plantarum, 57: 587-590.
[48] Yang C.M., Chang K.W., Yin M.H., Huang H.M. 1998, Methods for the determination of the chlorophylls and their derivatives. Taiwania, 43(2): 116-122.
[49] Yu J.L., Huang Y.H., Zhou S.F., Nogues, S. 2004, A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55: 1134-1135.
[50] Yuan Y. 2009, Effects of Arbuscular Mycorrhizal Fungi and Salicylic Acid on Salt Tolerance of Strawberry (Fragaria×ananassa Duch) Plants. Scientia Agricultura Sinica, 42(5): 1590-1594.
[51] Zengin F.K., Munzuroglu O. 2006, Toxic effects of cadmium (Cdþþ) on metabolism of sunflower (Helianthus annuus L.) seedlings. Acta Agriculture, 56: 224–229.
[52] Zhang M., Zhai Z., Tian, X. Duan, L. Li Z. 2008, Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56: 257-264.
[53] Zhu X., Song F., Xu H. 2010, Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20(5): 325-329.
_||_