Influence Different Level of Humic Acid and Irrigation Regime on Seed Yield and Morphological Traits of Corn under Warm and Dry Climate Condition
Subject Areas : Journal of Crop Nutrition ScienceKazem Banitamim 1 , Alireza Shokuhfar 2 *
1 - Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
2 - Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
Keywords: Drought stress, Maize, Organic manures,
Abstract :
In order to evaluation effect of different level of humic acid affected drought stress on seed yield, its components and morphological traits of corn a research farm was conducted according split plot experiment based randomized complete blocks design at three replication during 2015 year. Main factor included four irrigation regimes (90mm, 110 mm, 130 mm and 150mm evaporation from pan class A) and four level of humic acid belonged to subfactor (non-application or control, 20, 30 and 40 L.ha-1). According result of analysis of variance effect of different irrigation regime and humic acid on all measured traits (instead number of row per ear) was significant but interaction effect of treatments was not significant. Mean comparison result indicated 90 mm evaporation treatment had highest amount of plant height (191 cm), leaf area index (4.1), ear diameter (8.1 cm), ear length (21.4 cm), number of row per ear (14), number of seed per row (40), seed weight (338 gr), seed yield (7120 kg.ha-1), biologic yield (1650 kg.ha-1) and harvest index (48.6 %), instead ear length loses. Also among different level of humic acid 40 L.ha-1 had similar trend and was superior in all measured traits. It should be noted that the amount of organic matter in the soil, type and texture of the soil can be effective on grades of stress, and for each climate and region, the level of water stress and the optimum amount of humic acid can be different. Finally according result of this research irrigation at 90 mm evaporation from pan class A led to achieve highest seed yield and with 40 L.ha-1 humic acid treatment can be advised for studied region.
Adani, F., M. Sepagnol. and K. G. J. Nierop. 2006. Biochemical origin and refractory properties of humic acid extracted from maize plants. The contribution of lignin. Bio-Geochem. J. DOI: 10:1007/s 10533-006-9052- 4.
Aisha, H., M. R. Ali, M. Shafeek, R. Asmaa. and M. El- Desuki. 2014. Effect of various levels of organic fertilizer and humic acid on the growth and roots. Current Sci. Intl. 3(1): 7-14.
Aiyafar, S., H. Minab Poudineh. and M. Forouzandeh. 2015. Effect of humic acid on qualitative and quantitative characteristics and essential oil of black cumin (Nigella sativa L.) under water deficit stress. Intl. J. Sci. 4(2): 89-102.
Anyia, A. O. and H. Herzog. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur. J. Agron. 20: 327-339.
Atiyeh, R. M., S. Subler, C. A. Edwards, G. Bachman, J. D. Metzger. and W. Shuster. 2000. Effects of vermin-composts and compost on plant growth in horticultural. Container Media and Soil Pedobiologia. J. 44: 579–590.
Bakry, M. A. A., Y. R. A. Soliman. and S. A. M. Moussa. 2009. Importance of micronutrients, organic manure and bio-fertilizer for improving maize yield and its components growth in desert sandy soil. Res. J. Agric. Biol. Sci. 5(1): 16-23.
Baydar, H. and S. Erbas. 2005. Influence of seed development and seed position on oil, fatty acids and total tocophorol contents in sunflower (Helianthus annuus L.). Turk. J. Agric. 29: 179-186.
Borrell, A. K., D. Jordan, J. Mullet, P. Klein, R. Klein, H. Nguyen, D. Rosenow, G. Hammer, A. Douglas. and B. Henzell. 2008. Discovering stay-green drought tolerance genes in sorghum: a multidisciplinary approach. 14th Australian Agron. Conf. Adelaide. Australia.
Campos, H., M. Cooper, J. E. Habben, G. O. Edmeades. and J. R. Schussler. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Res. J. 90: 19-34.
Celik, H., A. Vahap Katkat. and B. Bulent Asik. 2010. Effect of foliar-applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. J. Communications Soil Sci. Plant Analysis. 42(1): 29-38.
Cordeiro, F. C., C. Santa-Catarina, V. Silveira. and S. R. De Souza. 2011. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays L). Bio-Sci. Bio-Technol. Bio-Chem. J. 75: 70-74.
Daur, I. and A. A. Bakhashwain. 2013. Effect of humic acid on growth and quality of maize with plants which received higher level of humic acid with compost production. Pak. J. Bot. 45(1): 21-25.
Delfine, S., R. Tognetti, E. Desiderio. and A. Alvino. 2005. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. Sustainable Develop. J. 25: 183-191.
Eldardiry, E. I., S. Kh. Pibars. and M. A. El-Hady. 2012. Improving soil properties, maize yield components grown in sandy soil under irrigation treatments and humic acid application. Aust. J. Basic Appl. Sci. 6(7): 587-593.
Fahramand, M., H. Moradi, M. Noori, A. R. Sobhkhizi, M. Adibian, Sh. Abdollahi. and Kh. Rigi. 2014. Influence of humic acid on increase yield of plants and soil properties. Intl. J. Farm. Alli. Sci. 3(3): 339-341.
Fazeli-Rostampor, M., M. Yarnya. and F. Rahimzade. 2012. Effect of polymer and irrigation regimes on dry matter yield and several physiological traits of forage sorghum. African J. Bio-Tech. 11: 10834-10840.
Ghavidel Shahraki, M., H. R. Ganjali. and S. M. Javadzadeh. 2017. Effect of manure and foliar application of humic acid on yield and yield component of Nigella sativa. Intl. J. Agri. Bio-Sci. 6(1): 25-27.
Gomaa, M. A, F. I. Radwan, G. A. M. Khalil, E. E. Kandil. and M. M. El-Saber. 2014. Impact of Humic Acid Application on Productivity of some Maize Hybrids under Water Stress Conditions. Middle East J. Appl. Sci. 4(3): 668-673.
Hirisch, A. M., Y. Fang, S. Asad. and Y. Kapulnik. 2007. The role of phytohormones in plant microbe symbioses. Plant and Soil. J. 94: 171-184.
Jaleel, C. A., P. Manivannan, G. M. A. Lakshmanan, M. Gomathinayagam. and R. Panneerselvam. 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloid Surf. B. Bio-Interf. J. 61: 298-303.
Jing-min, Z., X. Shangjun, S. Maopeng, M. Bingyao, C. Xiumei, and L. Chunsheng. 2010. Effect of humic acid on poplar physiology and biochemistry properties and growth under different water level. J. Soil Water Conservation. 8(1): 9-20.
Karimi, A. and M. Naderi. 2007. Yield and water use efficiency of forage corn as influenced super absorbent polymer application in soils with different textures. Agric. Res. J. 3: 187- 198. (Abstract in English)
Katkat, A. V., H. Celik, M. A. Turan. and B. B. Asik. 2009. Effects of soil and foliar applications of humic substances on dry weight and mineral nutrients uptake of wheat under calcareous soil conditions. Aust. J. Basic Appl. Sci. 3(2): 1266-1273.
Khadem, S. A., M. Ghalavio, S. R. Ramroodi, M. J. Mousavi. and P. Rezvani-Moghadam. 2011. Effect of animal manure and super absorbent polymer on yield and yield components on corn (Zea mays L.). Iranian J. Crop Sci. 1: 115-123. (Abstract in English)
Mao, S., M. R. Islam, X. Xue, X. Yang, X. Zhao. and Y. Hu. 2011. Evaluation of a water-saving superabsorbent polymer for corn (Zea mays L.) production in arid regions of northern China. African J. Agric. Res. 6: 4108-4115.
Mauromicale, G., M. G. L. Angela. and A. L. Monaco. 2011. The effect of organic supplementation of solarized soil on the quality of tomato. Scientia Horti. J. 129(2): 189-196.
Ogbonnaya, C. I., B. Sarr, C. Brou, O. Diouf, N. N. Diop. and H. R. Macauley. 2003. Selection of cowpea genotypes in hydroponics, pots, and field for drought tolerance. Crop Sci. J. 43: 1114-1120.
Pandey, R. K., J. W. Maranville. and A. Admou. 2001. Tropical wheat response to irrigation and nitrogen in a Sahelian environment. I. Grain yield, yield components and water use efficiency. Eur. J. Agron. 15: 93-105.
Puglisi, E., G. Fragoulis, P. Ricciuti, F. Cappa, R. Spaccini, A. Piccolo, M. Trevisan. and C. Crecchio. 2009. Effects of a humic acid and its size fractions on the bacterial community of soil rhizsphere under maize (Zea mays L.). Chemosphere. J. 77: 829-837.
Qurbani, S., H. R. Khzaee, M. Kafi. and M. Banayan Aval. 2010. Effect of application humic acid in Irrigation water on seed yield and its components of corn. Agro Ecological. J. 23: 123-131. (Abstract in English)
Rahmat, U. K., A. Rashid, M. S. Khan. and E. Ozturk. 2010. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (Truticum aestivum L.). Pak. J. Agric. Res. 23(3-4): 113-121.
Rajpar, M., B. Bhatti, Z. Hassan, A. N. Shah. and S. D. Tunio, 2011. Humic acid improves growth, yield and oil content of Brassica compestris L. Pak. J. Agri. Eng. Vet. Sci. 27(2): 125-133.
Sarir, M. S., M. Sharif, Z. Ahmed. and M. Akhlaq. 2005. Influence of different levels of humic acid application by various methods on the yield and yield components of maize. Sarhad J. Agric. 21(1): 75-81.
Saruhan, V., A. Kusvuran. and S. Babat. 2011. The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum L). Sci. Res. Essays. J. 6(3): 663-669.
SAS Institute Inc. 2002. The SAS System for Windows, Release 9.0. Statistical Analysis Systems Institute, Cary, NC, USA.
Seliim, E. M, A. A. Mosa, A. M. El-Ghamry. 2009. Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions. Agri. Water Manage. J. 96: 1218-1222.
Sharifi, P. 2017. Studying Maize Growth Indices in Different Water Stress Conditions and the Use of Humic Acid. Bio-Medical Pharm. J. 10(1): 303-310.
Shuixiu, H. and W. Ruizhen. 2001. A study on the effect of KOMIX, humic acid containing organic fertilizer on spring soybean. Acta Agric. Univ. Jiang. J. 23: 463-466.
Tohidi Moghadam, H. R., M. Khalafi Khamene, H. Zahedi. 2014. Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding at different growth stages. Maydica. J. 59: 124-128.
Tohidi Moghadam. H. R. 2015. Humic acid as an ecological pathway to protect corn plants against oxidative stress. Biol. Forum Intl. J. 7(1): 1704-1709.
Trevisan, S., D. Pizzeghello. and B. Ruperti. 2009. Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol. J. 12: 604-614.
Turkmen, O., A. Dursun, M. Turan. and C. Erdinc. 2004. Calcium and humic acid affect seed germination, growth and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agric. Scandinavica Plant Soil Sci. J. 54: 168- 174.
Verlinden, G., B. Pycke, J. Mertens, F. Debersaques, K. Verheyen, G. Baert, J. Bries. and G. Haesaert. 2009. Application of humic substances results in consistent increases in crop yield and nutrient uptake. J. Plant Nutr. 32: 1407-1426.
Waqas, M., B. Ahmad, M. Arif, F. Munsif, A. L. Khan, M. Amin, S. M. Kang, Y. H. Kim. and I. J. Lee. 2014. Evaluation of humic acid application methods for yield and yield components of mungbean. American J. Plant Sci. 5: 2269-2276.
Yoon-Ha, Y. H. Kim, A. L. Khan, Z. K. Shinwari, D. H. Kim, M. Waqas, M. Kamran. and J. L. In. 2012. Silicon treatment to rice (Oryza sativa L.) plants during different growth periods and its effects on growth and grain yield. Pak. J. Bot. 44(3): 891-897.