طراحی و تست آنتن دو بانده4G/5G برای باندهای فرکانسی 6/2 GHz و 5/3 GHz
محورهای موضوعی : مهندسی مخابراتامیر رضاقلی 1 * , حسین زرگر 2 , ایران سرافراز 3
1 - موسسه آموزش عالی زند شیراز
2 - پژوهشگاه ارتباطات و فناوری اطلاعات
3 - دانشگاه آزاد اسلامی واحد شیراز
کلید واژه: 4G LTE, 5G NR, آنتن چندبانده, آنتن پچ, شکاف.,
چکیده مقاله :
نسل پنجم شبکه تلفن¬های همراه (5G NR) با تکیه بر نسل چهارم (4G LTE) خود، پایه و اساس پهنای باند بهبودیافته شامل ظرفیت بیشتر برای کاربران بی¬سیم، لینک¬های بهبود یافته بین کاربران (زمان تأخیر و تلفات کمتر) و افزایش نرخ داده را برقرار می¬نماید. باندهای n38 (2600 مگاهرتز)، n48 (3500 مگاهرتز) و n78 (3500 مگاهرتز) به دلیل در دسترس بودن نسبتاً متداول، از رایج¬ترین باندهای فرکانسی 5G تست شده و مستقر می¬باشند. آنتن¬های دو یا چند بانده از الزامات اصلی همزیستی 5G با 4G هستند. از آنجایی که شکاف¬ها، آنتن¬های پچ را کوچک¬تر و کم-هزینه¬تر می¬کنند، آنتن¬های پچ شکاف¬دار برای استفاده در کاربردهای دو یا چند بانده 4G/5G بسیار جذاب می¬باشند. در این مقاله، یک آنتن پچ شکاف¬دار دو بانده برای باندهای فرکانسی 6/2 گیگاهرتز (برای هر دو4G LTE و 5G NR) و 5/3 گیگاهرتز (برای 5G NR) ارائه و پیشنهاد شده و عملکرد آن به صورت تجربی با موفقیت بررسی و تأیید شده است. توافق بسیار خوبی بین شبیه¬سازی ها و نتایج تجربی مشاهده می¬شود.
Building upon 4G LTE, 5G NR establishes the foundation for enhanced mobile broadband, including more capacity for wireless users, improved links among users (less lag time and network loss), and enhanced data rates. n38 (2600 MHz), n48 (3500 MHz), and n78 (3500 MHz) 5G NR bands are among the most commonly tested and deployed 5G frequency bands due to their relatively common availability. Dual-band or multi-band antennas are the key requirements of 5G coexistence with 4G. Since slots make patch antennas smaller and more low-cost, slot-patch antennas are extremely attractive to be used in 4G/5G dual-band or multi-band applications. In this paper, we have demonstrated a dual-band 4G LTE/5G NR slot-patch antenna for 2.6 GHz (for both 4G LTE and 5G NR) and 3.5 GHz (for 5G NR) frequency bands, and successfully verified its performance experimentally. A very good agreement can be seen between simulations and experimental results.
[1] GSMA. (2023). The Mobile Economy 2023. London, UK. https://www.gsma.com/mobileeconomy/wpcontent/uploads/2023/03/270223-The-Mobile-Economy-2023.pdf
[2] GSMA. (2023). GSM Association: https://www. gsmaintelligence.com/data/
[3] 5G Americas. (2021). 3GPP Releases 16 & 17 and beyond. Bellevue, Washington. USA. https://www.5gamericas.org/wp-content/uploads/2021/01/InDesign-3GPP-Rel-16-17-2021.pdf
[4] Cisco. (2020). Cisco Annual Internet Report (2018–2023) White Paper. San Jose, California, USA. https://www.cisco. com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf
[5] Ericsson. (2018). The 5G consumer business case: Revision A. Stockholm, Sweden.
[6] 5G Americas. (2017). LTE to 5G: Cellular and Broadband Innovation. Bellevue, Washington. USA. http://www.5gamericas .org/wpcontent/uploads/2019/07/2017_5G_Americas_Rysavy_LTE_5G_Innovation__Final_for_Upload_v2.pdf
[7] 5G Americas. (2018). LTE to 5G: The Global Impact of Wireless Innovation. Bellevue, Washington. USA. http://www. 5gamericas.org/wpcontent/uploads/2019/07/2018_5G_Americas_Rysavy_LTE_to_5G_The_Global_Impact_of_Wireless_Innovation_final.pdf
[8] GSMA. (2022). 5G Spectrum Positions Offer a Roadmap for Regulators. London, England, UK. https://www.gsma .com/spectrum/wp-content/uploads/2022/07/5G-Spectrum-Positions.pdf
[9] Nokia. (2017). 5G deployment below 6 GHz: Ubiquitous coverage for critical communication and massive IoT. Espoo, Finland.
[10] GSMA. (2019). The 5G Guide: A Reference for Operators. London, England, UK. https://www.gsma.com/wp-content/uploads/2019/04/The-5G-Guide_ GSMA_2019_04_29_ compressed.pdf
[11] Huawei. (2020). 5G Spectrum: Public Policy Position. Shenzhen, Guangdong, China. https://www-file.huawei.com/-/media/corporate/pdf/publicpolicy/public_policy_position_5g_spectrum_2020_v2.pdf?la=en
[12] ITU. (2015). Recommendation ITU-R M.2083-0: IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond. United Nations Economic and Social Council. Geneva, Switzerland. https:// www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
[13] Huawei. (2019). New 5G, New Antenna. Shenzhen, Guangdong, China. https://carrier.huawei.com/~/media/ CNBGV2/download/products/antenna/New-5G-New-Antenna-5G-Antenna-White-Paper-v2.pdf
[14] GSMA. (2021). 3.5 GHz in the 5G Era: Preparing for New Services in 3.3-4.2 GHz. London, England, UK. https:// www.gsma.com/spectrum/wp-content/uploads/2021/02/3.5-GHz-for-5G.pdf
[15] ITU. (2015). Final Acts WRC-15. United Nations Economic and Social Council. Geneva, Switzerland. https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.12-2015-PDF-E.pdf
[16] GSMA. (2021). WRC-23 IMT Agenda Items Overview. London, England, UK. https://www.gsma.com/spectrum/wp-content/uploads/2021/03/WRC-23-IMT-Agenda-Item Overview -Map.pdf
[17] ITU. (2019). Resolution 811 (WRC-19): Agenda for the 2023 world radiocommunication conference. United Nations Economic and Social Council. Geneva, Switzerland. https://www.itu.int/dms_pub/itur/oth/0c/0a/R0C0A00000D0041PDFE.pdf
[18] GSMA. (2020). Roadmaps for awarding 5G spectrum in the MENA region. London, England, UK. https://www.gsma. com/spectrum/wp-content/uploads/2020/10/Roadmaps-for-awarding-5G-spectrum-in-the-MENA-region.pdf
[19] M. Farias et al., “2.4–5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement,” AEÜ. International journal of electronics and communications, vol. 108, pp. 235–241, Aug. 2019, doi: https://doi.org/10.1016/j.aeue.2019.06.021.
[20] W. . Kwak, S. . Park, and J. . Kim, “A Folded Planar Inverted-F Antenna for GSM/DCS/Bluetooth Triple-Band Application,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 18–21, Dec. 2006, doi: https://doi.org/10.1109/lawp.2005.863617.
[21] M. Manteghi and Y. Rahmat-Samii, “A novel miniaturized triband PIFA for MIMO applications,” Microwave and Optical Technology Letters, vol. 49, no. 3, pp. 724–731, Jan. 2007, doi: https://doi.org/10.1002/mop.22239.
[22] N. Ojaroudi, N. Ghadimi, Y. Ojaroudi, and S. Ojaroudi, “An omnidirectional PIFA for downlink and uplink satellite applications in C‐band,” Microwave and optical technology letters, vol. 56, no. 11, pp. 2684–2686, Aug. 2014, doi: https://doi.org/10.1002/mop.28672.
[23] A. Abdelaziz and E. K. I. Hamad, “Design of a Compact High Gain Microstrip Patch Antenna for Tri-Band 5 G Wireless Communication,” Frequenz, vol. 73, no. 1–2, pp. 45–52, Jan. 2019, doi: https://doi.org/10.1515/freq-2018-0058.
[24] Hanieh Aliakbari, Abdolali Abdipour, Rashid Mirzavand, A. Costanzo, and P. Mousavi, “A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication,” Apr. 2016, doi: https://doi.org/10.1109/eucap.2016.7481318.
[25] El Shorbagy, M., Shubair, R. M., AlHajri, M. I., & Mallat, N. K. (2016, November). On the design of millimetre-wave antennas for 5G. In 2016 16th Mediterranean Microwave Symposium (MMS) (pp. 1-4). IEEE. DOI: 10.1109/ MMS.2016.7803878
[26] O. M. Haraz, M. A. Ali, Ayman Elboushi, and Abdel-Razik Sebak, “Four-element dual-band printed slot antenna array for the future 5G mobile communication networks,” Jul. 2015, doi: https://doi.org/10.1109/aps.2015.7304386.
[27] H. M. Marzouk, M. I. Ahmed, and A.-E. H. Shaalan, “NOVEL DUAL-BAND 28/38 GHZ MIMO ANTENNAS FOR 5G MOBILE APPLICATIONS,” Progress In Electromagnetics Research C, vol. 93, pp. 103–117, 2019, doi: https://doi.org/10.2528/pierc19032303.
[28] Marzouk, H. M., Ahmed, M. I., & Shaalan, A. H. A. (2019). Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications. Progress In Electromagnetics Research C, 93, 103-117.. DOI: 10.1109/APUSNCURSINRSM.2019.8888799
[29] M. H. Sharaf, A. I. Zaki, R. K. Hamad, and M. M. M. Omar, “A Novel Dual-Band (38/60 GHz) Patch Antenna for 5G Mobile Handsets,” Sensors, vol. 20, no. 9, p. 2541, Apr. 2020, doi: https://doi.org/10.3390/s20092541.
[30] N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. I. A. Al-Yasir, A. Ullah, R. A. Abd-Alhameed, and J. M. Noras, “Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals,” Sensors, vol. 19, no. 3, p. 456, Jan. 2019, doi: https://doi.org/10.3390/s19030456.
[31] N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, and R. A. Abd-Alhameed, “Design of Multi-Mode Antenna Array for Use in Next-Generation Mobile Handsets,” Sensors, vol. 20, no. 9, p. 2447, Apr. 2020, doi: https://doi.org/10.3390/s20092447.
[32] M. Yang, Y. Sun, and F. Li, “A Compact Wideband Printed Antenna for 4G/5G/WLAN Wireless Applications,” International Journal of Antennas and Propagation, vol. 2019, p. e3209840, Sep. 2019, doi: https://doi.org/10.1155/2019/3209840.
[33] J. C. Saturday, K. M. Udofia, and A. J. Jimoh, “Design of Dual Band Microstrip Antenna Using Reactive Loading Technique,” DOAJ (DOAJ: Directory of Open Access Journals), Oct. 2016.
[34] Balanis, C. A. (2016). Antenna theory: analysis and design. John wiley & sons.