مقایسه قدرت پیشبینی روشهای شبکههای عصبی مصنوعی و ARIMA در پیشبینی صادرات پوست و چرم ایران
محورهای موضوعی : فصلنامه علمی -پژوهشی تحقیقات اقتصاد کشاورزیفایزه سیف الحسینی 1 * , امیر محمدی نژاد 2 , رضا مقدسی 3
1 - کارشناس ارشددانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران
2 - استادیار دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران
3 - دانشیار دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران
کلید واژه: ایران, صادرات, پوست و چرم, پیش&rlm, بینی,
چکیده مقاله :
پیش بینی متغیرهای اقتصادی به عنوان یک ابزار مفید برنامه ریزی از اهمیت ویژه ای در مباحث علمی برخوردار است. روش های متنوعی وجود دارد که برای پیش بینی در مطالعات اقتصادی مورد استفاده قرار میگیرد. هدف مطالعه حاضر شناسایی روش کارا برای پیشبینی صادرات پوست و چرم ایران است. برای این منظور الگوی خودتوضیح جمعی میانگین متحرک[1]، روش شبکههای عصبی مصنوعی[2] و ترکیب الگوی خودتوضیح جمعی میانگین متحرک با شبکههای عصبی مصنوعی با استفاده از دادههای سری زمانی دوره 89-1350 مورد مقایسه قرار گرفتند. یافتههای این پژوهش نشان داد که روش ترکیبی(شامل شبکههای عصبی مصنوعی و الگوی خودتوضیح جمعی میانگین متحرک) که سری زمانی صادرات را به دو جزء خطی و غیرخطی تجزیه میکند، نسبت به روش شبکههای عصبی مصنوعی و الگوی خودتوضیح جمعی میانگین متحرک دقت و کارایی پیشبینی بهتری دارد. علاوه بر این، روش ترکیبی دقیقترین روش شناخته شده در این پژوهش، صادرات پوست و چرم ایران در سالهای آتی را بیشتر از دو روش دیگر ارائه کرد. اما همانند دو روش دیگر، روند صادرات پوست و چرم در سالهای آتی را کاهشی پیشبینی میکند.
طبقهبندی JEL : F17, C45, C22
Forecasting economic variables as a helpful planning tool has got considerable attention in economic literature. There are various methods that could be used for forecasting. The objective of this study is to identify an efficient method for predicting Iran’s leather and skin exports. For this purpose, auto-regressive integrated moving average process (ARIMA), artificial neural networks (ANN) and hybrid methodology of ANN-ARIMA were compared using time series data from 1971 to 2010. The results showed that hybrid methodology of ANN-ARIMA that decompose the exports time series into its linear and nonlinear forms has better forecasting performance and higher accuracy compare to other methods. In addition, the hybrid methodology as the most accurate method in this research, forecasted the amount of leather and skin export better than the other two methods. However, similar to other two methods it predicts that leather and skin exports would have a downward trend in coming years.
_||_