بررسی توان پیش بینی مدل های State Space و ARIMA-GARCH ،GARCH،ARIMA به کمک روش شبیه سازی مونت کارلو مطالعه موردی: شاخص قیمت بورس اوراق بهادار تهران )تپیکس(
محورهای موضوعی : اقتصاد کاربردیفرهاد غفاری 1 , عقیق فرهادی چشمه مرواری 2
1 - استادیار، عضو هیئت علمی دانشکده مدیریت و اقتصاد،
2 - کارشناس ارشد علوم اقتصادی
کلید واژه:
چکیده مقاله :
و ARIMA-GARCH ،GARCH ،ARIMA هدف اصلی در مقاله حاضر مقایسه دقت پیش بینی چهار مدلدر تخمین و پیش بینی شاخص قیمت بورس اوراق بهادار تهران )تپیکس( است. برای این منظور، State Spaceداده های روزانه 1 بهمن سال 1389 تا 30 بهمن سال 1392 به عنوان درون داده و 1 اسفند 1392 تا 30 اردیبهشت1393 به عنوان برون داده، استفاده شده اند. از طرفی دیگر، برای بررسی بیشتر و افزایش دقت پیش بینی مدل هایمذکور برای شاخص تپیکس در بلند مدت، شبیه سازی با روش مونت کارلو برای دو دوره زمانی میان مدت و کوتاهمدت با استفاده از برون داده و نیز برای یک مقایسه کلی با درون داده، صورت پذیرفته؛. سپس دقت پیش بینی ها بادر سه دوره زمانی )بلند GARCH ارزیابی شده است. نتایج به دست آمده نشان می دهند که مدل RMSE معیارمدت، میان مدت و کوتاه مدت(، و با استفاده از مقایسه با برون داده، از دقت پیش بینی بیشتری نسبت به سایر مدلمدل مناسب تری است.
محسن رفعتی، یداله آذرین فر و رویا محمدزاده
2010 (، انتخاب الگوی مناسب پیش بینی سطح زیر (
کشت، تولید و قیمت چغندرقند در ایران، نشریه
اقتصاد و توسعه کشاورزی )علوم و صنایع کشاورزی(،
160-149 ،2
Akgiray, V. (1989), .Conditional
Heteroskedasticity in Time Series of Stock
Returns: Evidence and Forecasts, Journal of
Business, 62, 55-80.
Andersen, T. &T. Bollerslev, (1997). Answering
the Critics: Yes ARCH Models do Provide
Good Volatility Forecasts, Kellogg School,
Northwestern University. 227
Brooks, C. (1998), Predicting stock index
volatility: Can market volume help?, Journal of
Forecasting, 17, 59-80.
Brooks R. D. & Lee J. H. (1997), The Stability
of ARCH Models Across Australian Financial
Futures Markets, Applied Financial
Economics,7, 347-359.
Durbin. James (2004). “ State space and
unobserved component models “. Cambridge
University Press.
Fiva Skarbøvik.Lars (2013), “ Forecasting House
Prices in Norway “, Master Thesis, TROSMØ
University Business School.
garcía-cicco. J. & Montero. R. (2011). Modeling
Copper Price: A Regime-Switching Approach,
Pontifical Catholic University of Argentina,
Working Paper
Hamilton, J. D. 1994, Time Series
Analysis,Princeton University Press,
Princeton,New Jeresey
Jorion, P. (1995). Predicting Volatility in the
Foreign Exchange Market, Journal of Finance,
50, 507-28.
Mapa.Dennis S., Mercader.Mazhiel H. and
Tolentino. Kristine Joy P. (2010), “ GARCH
vs. SV in Forecasting Asset Volatility:Do We
Need Another Volatility Model? “, 11th
National Convention on Statistics (NCS)
Maskus, K. E. (1990). Exchange rate risk and US
trade: A sectoral analysis, Financial Market
Volatility and the Economy, Federal Reserve
Bank of Kansas City.
Muhammad Kashif, Asghar Ali and Muhammad
Aslam (2011), “ Estimation and Forecast of the
Models for Stock Market Performance of the
Oil & Gas Companies in Pakistan “, Pakistan
Journal of Social Sciences (PJSS) Vol. 31, No.
2,P: 345-363
Pagan, A.& Schwert G. W., (1990). Alternative
models for conditional stock volatilities,
Journal of Econometrics, 45, 267-90.
Saini. Neha & Mittal. Anil Kumar, (2013).
Forecasting Volatility in Indian Stock Market
using State Space Models, Journal of Statistical
and Econometric Methods,.3,.1, 115-136
Sascha M. (2009), Applications of State Space
Models in Finance, Verlag Göttingen
University
Ser-Huang. Poon & Granger. Clive, (2003).
Forecasting Volatility in Financial Markets: A
Review , Journal of Economic Literature, 41, 2,
478-539.
Siti Roslindar Yaziz, Maizah Hura Ahmad, Lee
Chee Nian and Noryanti Muhammad, (2011), “
A Comparative Study on Box-Jenkins and
Garch Models in Forecasting Crude Oil Prices
“, Journal of Applied Sciences, V. 11, 7, P:
1129-1135
Tse, Y. K., (1991). Stock return volatility in the
Tokyo stock market, Japan and the World
Economy, 3, 285-98.
Tse, Y. K. & Tung, S. H. (1992). Forecasting
volatility in the Singapore stock market, Asia
Pacific Journal of Management, 9, 1-13.
West, K. D. & D. Cho, (1995), The Predictive
Ability of Several Models of Exchange RateVolatility, Journal of Econometrics, 69, 367-
91.