میکرواستخراج و اندازه¬گيري کوله کالسیفرول (ویتامین D3) در سیالهای زیستی با یک روش سه فازی و بهکارگیری فیبر توخالی و دو حلال آلی امتزاجناپذیر
محورهای موضوعی : شیمی تجزیه
1 - استادیار شیمی تجزیه، دانشکده شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: ویتامین D3, سوانگاری مايع با کارايي بالا, فيبر توخالي, سیالهای زیستی, پیشتغلیظ.,
چکیده مقاله :
در این مطالعه، استخراج و اندازهگیری ویتامین D3 در سیالهای زیستی با روش میکرواستخراج مایع-مایع با فیبر توخالی انجام شد. بدینمنظور از روش سه فازی و بهکارگیری دو حلال آلی امتزاجناپذیر در دیواره و درون فیبراستفاده شد. ویتامین از 8 میلیلیتر محلول نمونه با لایه نازکی از یک حلال آلی (نرمال دودکان) که در منافذ فیبر قرار دارد، استخراج شد. سپس، در داخل فیبر که حاوی استونیتریل درمقیاس میکرولیتر بود، استخراج برگشتی انجام شد. عوامل موثر بر این روش بررسی و شرایط بهینه بهدست آمد. در این شرایط عامل غنیسازی 130، حدتشخیص ng ml-1 9/0 و نمودار واسنجی در گستره 3 تا ng ml-1 1000 با R2 برابر با 999/0 بهدست آمد. برای بررسی دقت روش پیشنهادشده، تکرارپذیری در یک روز و تکثیرپذیری در چند روز انجام شد و انحراف معیار نسبی به ترتیب 4/5 و 1/6 بهدست آمد. در ادامه برای اثبات توانمندی روش پیشنهادی، استخراج این ویتامین از سیالهای زیستی انجام شد و با پژوهشهای انجامشده مقایسه شد و نتیجههای قابلقبولی بهدست آمد.
The validation of hollow fiber based on using two immiscible organic solvents in the lumen and wall pores of hollow fiber was evaluated for extraction and preconcentration of a trace amount of vitamin D3, before determination by HPLC-UV technique. The analyte was extracted from an 8-ml sample solution, into a thin layer of an organic solvent (n-dodecane) impregnated in hollow fiber pores, and finally back-extracted into an organic solvent (acetonitrile) located inside the lumen of the hollow fiber. The factors affecting the HF-LLLME of the target analyte were investigated and the optimal extraction conditions were determined. Under optimized conditions, the enrichment factor of 130 and limit of detection (LOD) of 0.9 ng ml-1 were obtained. The calibration curve was linear within the range of 3 to 1000 ng ml-1 with reasonable linearity (R2 = 0.999). The percent relative within-day and between-day standard deviation (RSD %) were 5.4 and 6.1, respectively. Finally, the feasibility of the proposed method was successfully evaluated by extraction and determination of the analyte in the biological fluids, and satisfactory results were obtained.
[1] Song Y, Slominski R, Qayyum S, Kang K, Janjetovic Z, Raman C. Improvement of copper FAAS determination conditions via preconcentration procedure with the use of salicylaldoxime complex trapped in polymer matrix. Talanta. 2012;96:82-88. doi: 10.1016/j.talanta .2012 .02.005
[2] Campos Gomes F, Faria Santos I, Makino Stephani C, Ramires M. Vitamin D3 supplementation may attenuate morphological and molecular abnormalities of the olfactory bulb in a mouse model of Down syndrome. Tissue and Cell. 2022;78;101898. doi: org/10.1016/j.tice.2022.101898
[3] Xu H, Liao Y, Yao J. Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples. Journal of Chromatography A. 2007;1167(1):1-8. doi: org/10.1016/j.chroma.2007.08.022
[4] Bilodeau L, Dufresne G, Deeks J, Clément G, Bertrand J, Turcotte S. Determination of vitamin D3 and 25-hydroxyvitamin D3 in foodstuffs by HPLC UV-DAD and LC–MS/MS. Journal of Food Composition and Analysis. 2011;24(3):441-448. doi: org/10.1016/j.jfca.2010.08.002
[5] Hymøller L, Krogh Jensen S. Vitamin D analysis in plasma by high performance liquid chromatography (HPLC) with C30 reversed phase column and UV detection – Easy and acetonitrile-free. Journal of Chromatography A. 2011;1218(14):1835-1841. doi: org/10.1016/j.chroma.2011.02.004
[6] Iwase H. Determination of vitamin D2 in emulsified nutritional supplements by solid-phase extraction and column-switching high-performance liquid chromatography with UV detection. Journal of Chromatography A. 2000;881(1-2):189-196. doi: org/10.1016/S0021-9673(00)00198-9
[7] Qian H, Sheng M. Simultaneous determination of fat-soluble vitamins A, D and E and pro-vitamin D2 in animal feeds by one-step extraction and high-performance liquid chromatography analysis. Journal of Chromatography A. 1988;526(6):127-133. doi: 10.1016/s0021-9673(98)00733-x
[8] Luque-Garcı́a JL, Luque de Castro MD. Extraction of fat-soluble vitamins. Journal of Chromatography A. 2001;935(1-2):3-11. doi: org/10.1016/S0021-9673(01)01118-9
[9] Tapadia K, Shrivas K, Bachan Upadhyay L. GC–MS Coupled with hollow-fiber drop-to-drop solvent microextraction for determination of antidepressants drugs in human blood sample. Chromatographia. 2011;74:437-442. doi: org/10.1007/s10337-011-2096-1
[10] van Hoof HJC, Swinkels LMJW, van Stevenhagen JJ. Advantages of paper chromatography as a preparative step in the assay of 1,25-dihydroxyvitamin D. Journal of Chromatography B: Biomedical Sciences and Applications. 1993; 621(1):33-39. doi: org/10.1016/0378-4347(93)80073-D
[11] V. Justová, Z. Wildtová, V. Pacovský. Determination of 1,25-dihydroxyvitamin D3 in plasma using thin-layer chromatography and modified competitive protein binding assay. Journal of Chromatography A. 1984;290:107-112. doi: org/10.1016/S0021-9673(01)93565-4
[12] Si Ho T, Pedersen-Bjergaard S, Rasmussen K. Recovery, enrichment and selectivity in liquid-phase microextraction: Comparison with conventional liquid–liquid extraction. Journal of Chromatography A. 2002;963(1-2):3-17. doi: org/10.1016/S0021-9673(02)00215-7
[13] Pedersen-Bjergaard S, Rasmussen K. Liquid−Liquid−Liquid Microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry. 1999;71(14):2650-2656. doi: org/10.1021/ac990055n
[14] Pedersen-Bjergaard S, Rasmussen K. Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques. Journal of Chromatography B. 2005;817(1):3-12. doi: org/10.1016/j.jchromb.2004.08.034
[15] Ghambarian M, Yamini Y, Esrafili A, Yazdanfar N. A new concept of hollow fiber liquid–liquid–liquid microextraction compatible with gas chromatography based on two immiscible organic solvents. Journal of Chromatography A. 2010;1217(36):5652-5658. doi: org/10.1016/j.chroma.2010.07.013
[16] Ali Khan W, Arain M, Yamini Y, Shah N. hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. Journal of Pharmaceutical Analysis. 2020;10:109-122. doi: org/10.1016/j.jpha.2019.12.003
[17] Khafi M, Javadi A, Afshar Mogaddam M. Combination of three-phase extraction with deep eutectic solvent-based dispersive liquid–liquid microextraction for the extraction of some antibiotics from egg samples prior to HPLC-DAD. Microchemical Journal. 2023; 190: 108652. doi: org/10.1016/j.microc.2023.108652
[18] Darvishnejad F, Raoof J, Ghani M, Ojani R. Keggin type phosphotungstic acid intercalated copper-chromium-layered double hydroxide reinforced porous hollow fiber as a sorbent for hollow fiber solid phase microextraction of selected chlorophenols besides their quantification via high performance liquid chromatography. Journal of Chromatography A. 2023;1697:463993. doi: org/10.1016/j.chroma.2023.463993
[19] Yang S, Wu C, Ji D, Xi Z, Chen K. Preparation and characterization of fiber braided tube reinforced polyethylene hollow fiber membranes via thermally induced phase separation. Journal of Environmental Chemical Engineering. 2023;11(9):109375. doi: org/10.1016/j.jece.2023.109375
[20] Tahmasebi E, Yamini Y, Saleh A. Extraction of trace amounts of pioglitazone as an anti-diabetic drug with hollow fiber liquid phase microextraction and determination by high-performance liquid chromatography-ultraviolet detection in biological fluids. Journal of Chromatography B. 2009;877(20-21):1923-1929. doi: org/10.1016/j.jchromb.2009.05.033
[21] Esrafili A, Baharfar M, Tajik M, Yamini Y. Two-phase hollow fiber liquid-phase microextraction. TrAC Trends in Analytical Chemistry. 2018;108:314-322. doi: org/10.1016/j.trac.2018.09.015
[22] Jeannot M, Cantwell F. Mass Transfer Characteristics of Solvent Extraction into a Single Drop at the Tip of a Syringe Needle. Analytical Chemistry. 1997;69(2):235-239. doi: org/10.1021/ac960814r
[23] Tao Y, Liu J, Hu X, Li H, Wang Th. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. Journal of Chromatography A. 2009;1216(35):6259-6266. doi.org/10.1016/j.chroma.2009.06.025
[24] Es’haghi Z, Kalateh Khooni M, Heidari T. Determination of brilliant green from fish pond water using carbon nanotube assisted pseudo-stir bar solid/liquid microextraction combined with UV–vis spectroscopy–diode array detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;79(3):603-607. doi: org/10.1016/j.saa.2011.03.042
[25] Esrafili A, Yamini Y, Ghambarian M, Shariati SH, Moradi M. Measurement of fluoroquinolone antibiotics from human plasma using hollow fiber liquid phase microextraction based on carrier mediated transport. Journal of Liquid Chromatography & Related Technologies. 2012;35(3):343-354. doi: org/10.1080/10826076.2011.601488
[26] Esrafili A, Yamini Y, Shariati SH. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids. Analytica Chimica Acta. 2007;604(2):127-133. doi: org/10.1016/j.aca.2007.10.012
[27] Sarafraz-Yazdi A, Amiri A.H, Es’haghi Z. BTEX determination in water matrices using HF-LPME with gas chromatography–flame ionization detector. Chemosphere. 2008;71(4):671-676. doi: org/10.1016/j.chemosphere.2007.10.073
[28] Es ̕haghi Z, Azmoodeh R. Hollow fiber supported liquid membrane microextraction of Cu2+ followed by flame atomic absorption spectroscopy determination. Arabian Journal of Chemistry. 2010;3(1):21-26. doi: org/10.1016/j.arabjc.2009.12.004
[29] Siang G.H, Makahleh A, Saad B. Hollow fiber liquid-phase microextraction coupled with gas chromatography-flame ionization detection for the profiling of fatty acids in vegetable oils. Journal of Chromatography A. 2010;12174(52):8073-8078. doi: org/10.1016/j.chroma.2010.10.052
[30] Perez-Serradilla JA, Priego-Capote F. Simultaneous ultrasound-assisted emulsification−extraction of polar and nonpolar compounds from solid plant samples. Analytical Chemistry. 2007;79(17):6767-6774. doi: org/10.1021/ac0708801
[31] Luque de Castro MD, Priego-Capote F. Ultrasound-assisted preparation of liquid samples. Talanta. 2007;72(2): 321-334. doi: org/10.1016/j.talanta.2006.11.013
[32] Quesada JM, Mata-Granados JM, Luque de Castro MD. Automated method for the determination of fat-soluble vitamins in serum. The Journal of Steroid Biochemistry and Molecular Biology. 2004;89-90:473–477. doi: org/10.1016/j.jsbmb.2004.03.056
[33] Sobhi HR, Yamini Y, Esrafili A, Baghdad Abadi R. Suitable conditions for liquid-phase microextraction using solidification of a floating drop for extraction of fat-soluble vitamins established using an orthogonal array experimental design. Journal of Chromatography A. 2008;1196-1197:28-32. doi: org/10.1016/j.chroma.2008.05.005
[34] Moreno P, Salvadó V. Determination of eight water- and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography. Journal of Chromatography A. 2000;870(1-2):207-215. doi: org/10.1016/S0021-9673(99)01021-3