بررسی میزان تجمع کادمیوم و سرب درگیاه دارویی همیشه بهار (Calendula officin alis)
محورهای موضوعی : ژنتیکمهراب یادگاری 1 * , سمیرا اسکندری 2 , رامین ایرانی پور 3
1 - گروه زراعت و گیاهان دارویی، دانشکده کشاورزی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران.
2 - گروه زراعت و گیاهان دارویی، دانشکده کشاورزی، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران.
3 - مرکز تحقیقات کشاورزی و منابع طبیعی استان چهارمحال و بختیاری، شهرکرد، ایران.
کلید واژه: سرب, گیاهپالایی, کادمیوم, آستانه تحمل, همیشه بهار,
چکیده مقاله :
فلزات سنگین از جمله مهمترین آلایندههای زیست محیطی هستند که در تمام جوامع صنعتی یافت میشوند. برای اصلاح خاکهای آلوده به فلزات سنگین، روشی به نام گیاهپالایی وجود دارد. به منظور بررسی پتانسیل پالایش گیاه همیشه بهار به فلزات سنگین سرب و کادمیوم و اثر آنها بر رشد، عملکرد و سایر صفات زراعی این گیاه، آزمایشی فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار به صورت گلدانی در مرکز تحقیقات سازمان پارکها و فضای سبز شهرداری شهرکرد در سال 1395 انجام شد. فاکتورهای آزمایش شامل کادمیوم در چهار سطح (0، 5، 25 و 50 میلیگرم در کیلوگرم خاک خشک) و سرب در چهار سطح (0، 40، 100 و 250 میلیگرم در کیلوگرم خاک خشک) بود. نتایج نشان داد که سطوح مختلف سرب وکادمیوم، تأثیر معنادار برخصوصیات مورفوفیزیولوژیکی گیاه همیشه بهار داشت. وزن خشک بخش هوایی و ریشه و تجمع کادمیوم و سرب در گیاه و خاک تحت تأثیر تیمارهای آزمایشی قرار گرفت. با افزایش غلظت فلزات، مقدار وزن خشک ریشه و بخش هوایی به طور معنادار نسبت به تیمار شاهد کاهش یافت. با افزایش غلظت کادمیوم، میزان انباشت کادمیوم در گیاه و میزان کادمیوم قابل جذب خاک افزایش یافت و کادمیوم ضمن حرکت به بخشهای هوایی همراه با سرب بیشتری به بخشهای هوایی منتقل شد. مشخص شد که ﮔﯿﺎه ﻫﻤﯿﺸﻪ ﺑﻬﺎر ﮔﯿﺎﻫﯽ ﺑﯿﺶاﻧﺒﺎﺷتگر اﺳﺖ ﮐﻪ ﻗﺎدر ﺑﻪ اﻧﺒﺎﺷﺖ ﻓﻠﺰات ﺳﻨﮕﯿﻦ ﺳﺮب و ﮐﺎدﻣﯿﻢ در بخشهای مختلف گیاه به خصوص بخش هوایی است. آستانه تحمل گیاه تا تیمار تحت آلودگی ترکیبی کادمیوم پنج (میلیگرم در کیلوگرم) و سرب 250 (میلیگرم درکیلوگرم) بود و پس از آن در اکثر صفات مورد بررسی روند نزولی دیده شد. به نظر میرسد اثرات منفی این فلزات به خصوص کادمیوم، غالباً به دلیل اثر بر فتوسنتز گیاهی، میباشد.
Heavy metals are the most important bioenvironmental pollutants that are found in all industrial communities. The phytoremediation technique is applied to refine the land and reclaim contaminated soil from heavy metals. In order to evaluate the phytoremediation potential of Marigold plant against lead and cadmium heavy metals and their influence on growth, yield, and other characteristics of this plant, a pot experiment was carried out in a completely randomized design in a factorial layout with six replications at Research Field Municipal Parks and Green Spaces of Shahrekord during spring and summer of 2016. Treatments included different levels of cadmium (0, 5, 25, and 50 mg.kg-1 in dry soil) and lead (0, 40, 100, and 250 mg.kg-1 in dry soil). Results showed that different levels of lead and cadmium significantly affected morpho-physiological characteristics. Shoot and root dry and fresh weights and lead and cadmium accumulation in plant soil differed significantly. With an increase in heavy metal concentrations, shoot and root dry and fresh weights significantly decreased compared to the control plants. By adding cadmium concentration, the amount of cadmium in plant and available cadmium in soil increased and therefore translocated to aerial parts of plants along with the more lead. Results of this research showed that Marigold is a super accumulator plant that can accumulate cadmium and lead particularly in its aerial parts. The tolerance threshold in this plant was observed in the treatment containing combination of cadmium (up to 5 mg.kg-1) and lead (up to 250 mg.kg-1) of dry soil after which a decreasing trend was observed in most of the characteristics under study. It seems that negative effects of these heavy metals particularly cadmium is due to their effect on photosynthesis.
Abdel-Salam, A.A., Salem, H.M. and Seleiman, M. F. (2015). Phytochemical Removal of Heavy Metal-Contaminated Soils. Heavy Metal Contamination of Soils. Springer International Publishing. p. 299-309.
Agrawal, V. and Sharma, K. (2006). Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Plant Biolology. 50: 307-310.
Anderson, V.M. (2013). Calendula officinalis growth and production of secondary compounds in greenhouse and soil-based herbal organic production systems. Theses and Dissertations. Plant and Soil Sciences. University of Kentucky UK Publishing,p. 145-176.
Borghei, M., Arjmandi, R. and Moogouei, R. (2011). Potential of Calendula alata for phytoremediation of stable cesium and lead from solutions. Environmental Monitoring Assessment. 181:63-68.
Bunghez, I.R and Mariana Ion, R. (2011). Complex spectral characterization of active principles from marigold (Calendula officinalis). Journal of Science Art. 1(14):59-64.
Chhotu, D., Jadia, D. and Fulekar, M.H. (2009). Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology. 8(6): 921-928.
Dada, O.A., Fayinminnu, O.O. and Taiwo, T.O. (2012). Phytoremediation of Pb, Cd and as from urban solid waste compost using Tithonia diversifolia hemnsl and Ageratum conyzoides L. Annals West University Timisoara Biology.(2): 149-158.
Davari, M., Homaee, M. and Khodaverdiloo, H. (2010). Modeling phytorememediation of Ni and Cd and from contaminated soils using macroscopic transpiration reduction functions. Water Soil Science. 14: 75-8. (In Persian with English abstract).
Diaconu, D., Diaconu, R. and Navrotescu, T. (2012). Estimation of heavy metals in medicinal plants and their infusions. Analele Universitatii" Ovidius" Constanta-Seria Chimie. 23(1):115-120.
Garbisu, C., and Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresoures Technology. 77(3): 229-236.
Garcia-Risco, M.R., Mouhid, L., Perez, L.S. and Padilla, A.L. (2017). Biological Activities of Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) Plant Extracts. Plant Foods for Human Nutrition. 72(1): 96-102.
Hajar, E.W.I., Sulaiman, A.Z.B. and Sakinah, A.M. (2014). Assessment of Heavy Metals Tolerance in Leaves, Stems and Flowers of Stevia rebaudiana Plant. Procedia Environmental Science. 20:386-393.
Houshmandfar, A. and Moraghebi, F. (2011). Effect of mixed cadmium, copper, nickel and zinc on seed germination and seedling growth of safflower. African Journal of Agricultural Research. 6(5): 1182-1187.
Jabeen, R., Ahmad, A. and Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Botanical Review. 75(4): 339-364.
John, R., Ahmad, P., Gadgi, K. and Sharma, S. (2009). Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production. 3 (3): 65- 76.
Karimi, R., Chorom, M. and Safe, A. (2012). Potential of Vicia faba and Brassica arvensis for phytoextraction of soil contaminated with cadmium, lead and nickel. African Journal of Agricultural Research. 7(22): 3293-3301.
Khalid, A., and Teixeira da Silva, J.A. (2012). Biology of Calendula officinalis: focus on pharmacology, biological activities and agronomic practices. Medicinal Aromatic Plant Science Biotechnology. 6(11): 12-27.
Khatamipour, M., Piri, E., Esmaeilian, Y. and Tavassoli, A. (2011). Toxic effect of cadmium on germination, seedling growth and proline content of Milk thistle (Silybum marianum). Scholars Research Library Annals Biology Research. 2(5): 527-532.
Lone, M.I., Li, H., Zhen, P.J., Stoffella, E. and Yang, X. (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University Science Bulletin. 9: 210-220.
Małkowski, E., Kurtykal, R., Kita, A. and Karcz, W. (2005). Accumulation of Pb and Cd and its effect on Ca distribution in maize seedlings (Zea Mays L.). Polish Journal of Environmental Studies. 14(2): 203-207.
Manio, T., Stentiford, E.I. and Millner, P.A. (2003). The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in substrate containing sewage sludge compost and watered with metaliferus water. Ecology Engineering. 20: 65-74.
Mauskar, J.M. (2008). Cadmium, an environment toxicant, central pollution control board, ministry of environment and forests, Govt of India, Parivesh Bhawan, East Arjun Nagar, Delhi-110032.
Mok, M.C. (1994). Cytokinins and plant development. Chemistry Actions and Functions.p. 155-166.
Moosavi, S.G. and Seghatoleslami, M.J. (2013). Phytoremediation: a review. Advance Agrcuture Biology. 1: 5-11.
Moustakas, N.K., Akoumianaki-Ioannidou, A. and Barouchas, P.E. (2011). The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.). Australian Journal of Crop Science. 5(3): 277-282.
Muriefah, S.S. (2008). Growth parameters and elemental status of cucumber (Cucumus sativus) seedlings in response to cadmium accumulation. International Journal of Agriculture and Biology. 10(3): 261-266.
Pirzad, A. and Shokrani, F. (2012). Effect of biological nitrogen (added to irrigation system) and end season water deficit on growth of leaf and flower yield in Calendula officinalis L. International Journal of Agriculture.2(3): 183-190.
Pulford, I.D. and Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees-a review. Environmental International. 29(4):529-540.
Rodriguez, J.A., Nanos, N., Grav, J.M. and Gil, L. (2008). Multiscale analysis of heavy metal contents in Spanish agriculture topsoils. Chemosphere. 70:1085-1096.
Sahmurova, A., Celik, M. and Allahverdiyev, S. (2010). Determination of the accumulator plants in Kucukcekmece Lake (Istanbul). African Journal of Biotechnology. 6545-6551.
Safari Sinegani, A.A. and Khalilikhah, F. (2011). The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environmental Chemistry Letter. 9(2): 259-265.
Sekara, A., Poniedzialeek, M., Ciura, J. and Jedrszczyk, E. (2005). Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish Journal of Environmental Studies. 14(4): 509-516.
Shi, G.R., Cai, Q.S., Liu, Q.Q. and Wu, L. (2009). Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiologiae Plantarum. 31(5): 969-977.
Vassilev, A., Berova, M., Stoeva, N. and Zlatev, Z. (2005). Chronic Cd toxicity of bean plants can be partially reduced by supply of ammonia sulphate. Journal of Crop European Agriculture. 6: 389-396.
Vodyanitskii, Y.N. (2016). Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science. 14: 257-263.
Wang, H., Zhao, S.C., Liu, R.L., Zhou, W. and Jin, J.Y. (2009). Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica. 47 (2): 277- 283.
Yadegari, M., Karimi, S. and Irani Pour, R. (2013). The effect of heavy metals (Cd and Ni) on growth, yield and other characters of Portulaca oleracea L. Journal of Applied Science and Agriculture. 8(7): 1438-1445.
Yadegari, M. (2015). Foliar application of micronutrients on essential oils of borago, thyme and marigold. Journal of Soil Science and Plant Nutrition. 15 (4). 946-964.
Yang, Z.H.A.O., Yuan-Zhi, P.A.N., Biying, L.I.U. and Lei, C.A.I. (2012). Pilea cadierei Gagnep. Guill's Growth and Accumulation under Single and Combined Pollution of Cd and Pb. Journal of Agro-Environment Science. 1: 10-11.
Zhao, Y.D., Pan, Y.Z., Liu, B.Y. and Cai, L. (2012). Pilea cadierei Gagnep. et Guill's growth and accumulation under single and combined pollution of Cd and Pb. Journal of Agro-Environment Science. 31(1): 48-53.
Zhang, H., Guo, Q., Yang, J. and Ma, J. (2014). Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems. Journal of Environmental Sciences. 26(10): 2048-2055.
_||_
Abdel-Salam, A.A., Salem, H.M. and Seleiman, M. F. (2015). Phytochemical Removal of Heavy Metal-Contaminated Soils. Heavy Metal Contamination of Soils. Springer International Publishing. p. 299-309.
Agrawal, V. and Sharma, K. (2006). Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysentrica. Plant Biolology. 50: 307-310.
Anderson, V.M. (2013). Calendula officinalis growth and production of secondary compounds in greenhouse and soil-based herbal organic production systems. Theses and Dissertations. Plant and Soil Sciences. University of Kentucky UK Publishing,p. 145-176.
Borghei, M., Arjmandi, R. and Moogouei, R. (2011). Potential of Calendula alata for phytoremediation of stable cesium and lead from solutions. Environmental Monitoring Assessment. 181:63-68.
Bunghez, I.R and Mariana Ion, R. (2011). Complex spectral characterization of active principles from marigold (Calendula officinalis). Journal of Science Art. 1(14):59-64.
Chhotu, D., Jadia, D. and Fulekar, M.H. (2009). Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology. 8(6): 921-928.
Dada, O.A., Fayinminnu, O.O. and Taiwo, T.O. (2012). Phytoremediation of Pb, Cd and as from urban solid waste compost using Tithonia diversifolia hemnsl and Ageratum conyzoides L. Annals West University Timisoara Biology.(2): 149-158.
Davari, M., Homaee, M. and Khodaverdiloo, H. (2010). Modeling phytorememediation of Ni and Cd and from contaminated soils using macroscopic transpiration reduction functions. Water Soil Science. 14: 75-8. (In Persian with English abstract).
Diaconu, D., Diaconu, R. and Navrotescu, T. (2012). Estimation of heavy metals in medicinal plants and their infusions. Analele Universitatii" Ovidius" Constanta-Seria Chimie. 23(1):115-120.
Garbisu, C., and Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresoures Technology. 77(3): 229-236.
Garcia-Risco, M.R., Mouhid, L., Perez, L.S. and Padilla, A.L. (2017). Biological Activities of Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) Plant Extracts. Plant Foods for Human Nutrition. 72(1): 96-102.
Hajar, E.W.I., Sulaiman, A.Z.B. and Sakinah, A.M. (2014). Assessment of Heavy Metals Tolerance in Leaves, Stems and Flowers of Stevia rebaudiana Plant. Procedia Environmental Science. 20:386-393.
Houshmandfar, A. and Moraghebi, F. (2011). Effect of mixed cadmium, copper, nickel and zinc on seed germination and seedling growth of safflower. African Journal of Agricultural Research. 6(5): 1182-1187.
Jabeen, R., Ahmad, A. and Iqbal, M. (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Botanical Review. 75(4): 339-364.
John, R., Ahmad, P., Gadgi, K. and Sharma, S. (2009). Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production. 3 (3): 65- 76.
Karimi, R., Chorom, M. and Safe, A. (2012). Potential of Vicia faba and Brassica arvensis for phytoextraction of soil contaminated with cadmium, lead and nickel. African Journal of Agricultural Research. 7(22): 3293-3301.
Khalid, A., and Teixeira da Silva, J.A. (2012). Biology of Calendula officinalis: focus on pharmacology, biological activities and agronomic practices. Medicinal Aromatic Plant Science Biotechnology. 6(11): 12-27.
Khatamipour, M., Piri, E., Esmaeilian, Y. and Tavassoli, A. (2011). Toxic effect of cadmium on germination, seedling growth and proline content of Milk thistle (Silybum marianum). Scholars Research Library Annals Biology Research. 2(5): 527-532.
Lone, M.I., Li, H., Zhen, P.J., Stoffella, E. and Yang, X. (2008). Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. Journal of Zhejiang University Science Bulletin. 9: 210-220.
Małkowski, E., Kurtykal, R., Kita, A. and Karcz, W. (2005). Accumulation of Pb and Cd and its effect on Ca distribution in maize seedlings (Zea Mays L.). Polish Journal of Environmental Studies. 14(2): 203-207.
Manio, T., Stentiford, E.I. and Millner, P.A. (2003). The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in substrate containing sewage sludge compost and watered with metaliferus water. Ecology Engineering. 20: 65-74.
Mauskar, J.M. (2008). Cadmium, an environment toxicant, central pollution control board, ministry of environment and forests, Govt of India, Parivesh Bhawan, East Arjun Nagar, Delhi-110032.
Mok, M.C. (1994). Cytokinins and plant development. Chemistry Actions and Functions.p. 155-166.
Moosavi, S.G. and Seghatoleslami, M.J. (2013). Phytoremediation: a review. Advance Agrcuture Biology. 1: 5-11.
Moustakas, N.K., Akoumianaki-Ioannidou, A. and Barouchas, P.E. (2011). The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis L.). Australian Journal of Crop Science. 5(3): 277-282.
Muriefah, S.S. (2008). Growth parameters and elemental status of cucumber (Cucumus sativus) seedlings in response to cadmium accumulation. International Journal of Agriculture and Biology. 10(3): 261-266.
Pirzad, A. and Shokrani, F. (2012). Effect of biological nitrogen (added to irrigation system) and end season water deficit on growth of leaf and flower yield in Calendula officinalis L. International Journal of Agriculture.2(3): 183-190.
Pulford, I.D. and Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees-a review. Environmental International. 29(4):529-540.
Rodriguez, J.A., Nanos, N., Grav, J.M. and Gil, L. (2008). Multiscale analysis of heavy metal contents in Spanish agriculture topsoils. Chemosphere. 70:1085-1096.
Sahmurova, A., Celik, M. and Allahverdiyev, S. (2010). Determination of the accumulator plants in Kucukcekmece Lake (Istanbul). African Journal of Biotechnology. 6545-6551.
Safari Sinegani, A.A. and Khalilikhah, F. (2011). The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environmental Chemistry Letter. 9(2): 259-265.
Sekara, A., Poniedzialeek, M., Ciura, J. and Jedrszczyk, E. (2005). Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish Journal of Environmental Studies. 14(4): 509-516.
Shi, G.R., Cai, Q.S., Liu, Q.Q. and Wu, L. (2009). Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiologiae Plantarum. 31(5): 969-977.
Vassilev, A., Berova, M., Stoeva, N. and Zlatev, Z. (2005). Chronic Cd toxicity of bean plants can be partially reduced by supply of ammonia sulphate. Journal of Crop European Agriculture. 6: 389-396.
Vodyanitskii, Y.N. (2016). Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science. 14: 257-263.
Wang, H., Zhao, S.C., Liu, R.L., Zhou, W. and Jin, J.Y. (2009). Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica. 47 (2): 277- 283.
Yadegari, M., Karimi, S. and Irani Pour, R. (2013). The effect of heavy metals (Cd and Ni) on growth, yield and other characters of Portulaca oleracea L. Journal of Applied Science and Agriculture. 8(7): 1438-1445.
Yadegari, M. (2015). Foliar application of micronutrients on essential oils of borago, thyme and marigold. Journal of Soil Science and Plant Nutrition. 15 (4). 946-964.
Yang, Z.H.A.O., Yuan-Zhi, P.A.N., Biying, L.I.U. and Lei, C.A.I. (2012). Pilea cadierei Gagnep. Guill's Growth and Accumulation under Single and Combined Pollution of Cd and Pb. Journal of Agro-Environment Science. 1: 10-11.
Zhao, Y.D., Pan, Y.Z., Liu, B.Y. and Cai, L. (2012). Pilea cadierei Gagnep. et Guill's growth and accumulation under single and combined pollution of Cd and Pb. Journal of Agro-Environment Science. 31(1): 48-53.
Zhang, H., Guo, Q., Yang, J. and Ma, J. (2014). Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems. Journal of Environmental Sciences. 26(10): 2048-2055.