بررسی برخی پاسخهای مورفولوژیکی و فیزیولوژیکی گیاه دارویی بادرشبویه (Dracocephalum moldavica L.) به سلنیوم تحت تنش شوری
محورهای موضوعی : ژنتیکعلیرضا ایرانبخش 1 , سارا سعادتمند 2 , رمضانعلی خاوری نژاد 3 , بیتا زاجی 4
1 - گروه زیستشناسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه زیستشناسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه زیستشناسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه زیستشناسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: سلنیوم, رنگیزههای فتوسنتزی, مالوندیآلدئید, پتانسیلآب, محلولهای سازگار, نشت الکترولیتی,
چکیده مقاله :
شوری یکی از مهمترین تهدیدهای محیطی است که بر رشد، توسعه و بهرهوری گیاهان اثر میگذارد، لذا دسترسی به روشهای کاهش اثرات منفی آن بر روی گیاهان امری ضروری به نظر می رسد. به همین منظور، آزمایشی گلخانهای در قالب طرح کاملاً تصادفی با تیمارهای شوری (0، 25، 50 و 75 میلیمولار) و محلولپاشی سلنیوم (0، 5، 10 میکرومولار) اجرا گردید تا نقش احتمالی سلنیوم در تنظیم بردباری گیاه دارویی بادرشبویه به شوری مورد بررسی قرار گیرد. در این راستا محلولپاشی پس از استقرار گیاهچهها در سه مرحله زمانی، همزمان با اعمال تنش شوری و سپس به فاصله هر هفته یکبار انجام شد. نتایج نشان داد که شاخصهای رشد، رنگیزههای فتوسنتزی و محتوای نسبی آب برگ گیاهان بادرشبویه تحت تأثیر تنش شوری در سطوح مختلف بهطور معنیدار کاهش پیدا کردند. محلولپاشی سلنیوم بهویژه در غلظت کم سبب بهبود کلیه صفات ذکرشده در شرایط تنش شوری گردید. در مقابل، سطح بالای سلنیوم سبب تشدید اثر منفی شوری شد، بهطوریکه حداکثر میزان مالوندیآلدئید، نشت الکترولیتی و پتانسیلآب توسط سلنیوم (10 میکرومولار) در شرایط تنش شوری شدید (75 میلیمولار) حاصل گردید و منجر به تجمع پرولین و قندهای محلول شد. این بررسی نشان داد تیمار سلنیوم در غلظت پایین نقش بسزایی در کاهش اثرات مضر شوری از طریق افزایش رنگیزههای فتوسنتزی، حفظ یکپارچگی غشاء، کاهش پتانسیلآب و انباشت محلولهای سازگار داشته و در نتیجه سبب بهبود عملکرد گیاهان بادرشبویه تحت تنش شوری شد.
Salt stress is one of the most important environmental threats that adversely affects the growth, development, and productivity of plants; therefore, suitable approaches are needed to mitigate its negative effects on plants. For this purpose, a pot experiment was carried out in a completely randomized design with two treatments include salinity (0, 25, 50, and 75 mM) and foliar application of selenium (0, 5 and 10 µM Na2SeO4), and the possible role of selenium in regulating Moldavian balm salt tolerance was investigated. Foliar applications of selenium were applied after seedlings establishment at three stages, simultaneously with the application of salinity stress, and then at weekly intervals. Results indicated that growth indices, photosynthetic pigments, and relative water content of leaves in Moldavian balm plants were decreased significantly by various levels of salinity stress. Foliar application of selenium especially at the low concentration increased all the mentioned traits in stress conditions. In contrast, high level of selenium magnified the negative effect of salinity, so that the highest value of malondialdehyde, electrolyte leakage, and water potential were obtained by 10 µM selenium under 75 mM NaCl and caused the accumulation of proline and soluble sugars. This study indicates that selenium at low concentration plays a significant role in alleviating the harmful effects of salinity through photosynthetic pigments, maintaining membrane integrity, reducing water potential, accumulation of compatible solutes, and consequently, improved the performance in Moldavian balm plants growing under salt stress.
Abbas, S.M. (2013). Low levels of selenium application attenuate low temperature stress in sorghum (Sorghum Bicolor (L.) Moench.) seedlings. Pakistan Journal of Botany. 45(5): 1597-1604.
Agami, R.A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany. 88: 171-177.
Ahmad, P., Allah, E.A., Hashem, A., Sarwat, M. and Gucel, S. (2016). Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern & Cross) by up-regulating antioxidative system and secondary metabolites. Journal of Plant Growth Regulation. 35(4): 936-950.
Ashraf, M. and Harris, P. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science. 166(1): 3-16.
Ashraf, M.A., Akbar, A., Parveen, A., Rasheed, R., Hussain, I. and Iqbal, M. (2018). Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry.123: 268-280.
Astaneh, R.K., Bolandnazar, S., Nahandi, F. Z. and Oustan, S. (2017). Effects of selenium on some physiological traits and K, Na concentration of garlic (Allium sativum L.) under NaCl stress. Information Processing in Agriculture. 5(1): 156-161.
Bates, L., Waldren, R. and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1): 205-207.
Chen, T., Zheng, W., Luo, Y., Yang, F., Bai, Y. and Tu, F. (2005). Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella vulgaris. Journal of Plant Physiology and Molecular Biology. 31(4): 369-373.
Chutipaijit, S., Cha-um, S. and Sompornpailin, K. (2011). High contents of proline and anthocyanin increase protective response to salinity in 'Oryza sativa' L. spp. 'indica'. Australian Journal of Crop Science. 5(10): 1191-1198.
Dalio, R.J.D., Pinheiro, H.P., Sodek, L. and Haddad, C.R.B. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiologiae Plantarum. 33(5): 1887-1896.
Dastmalchi, K., Dorman, H. D., Koşar, M. and Hiltunen, R. (2007). Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT-Food Science and Technology. 40(2): 239-248.
Diao, M., Ma, L., Wang, J., Cui, J., Fu, A. and Liu, H.-y. (2014). Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation. 33(3): 671-682.
Djanaguiraman, M., Devi, D.D., Shanker, A. K., Sheeba, J.A. and Bangarusamy, U. (2005). Selenium-an antioxidative protectant in soybean during senescence. Plant and Soil. 272(1-2): 77-86.
Djanaguiraman, M., Prasad, P. and Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry. 48(12): 999-1007.
Feng, R., Wei, C. and Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany. 87: 58-68.
Filek, M., Keskinen, R., Hartikainen, H., Szarejko, I., Janiak, A., Miszalski, Z. and Golda, A. (2008). The protective role of selenium in rape seedlings subjected to cadmium stress. Journal of Plant Physiology. 165(8): 833-844.
Han, D., Li, X., Xiong, S., Tu, S., Chen, Z., Li, J. and Xie, Z. (2013). Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environmental and Experimental Botany. 95: 6-14.
Handa, N., Kohli, S. K., Thukral, A. K., Bhardwaj, R., Alyemeni, M. N., Wijaya, L. and Ahmad, P. (2018). Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotechnology.8(1): 66.
Hasanuzzaman, M., Hossain, M.A. and Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research. 143(3): 1704-1721.
Hawrylak-Nowak, B. (2009). Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research. 132(1-3): 259-269.
Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125(1): 189-198.
Iqbal, N., Umar, S., Khan, N. A. and Khan, M.I.R. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany. 100: 34-42.
Irigoyen, J., Einerich, D. and Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia Plantarum. 84(1): 55-60.
Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H. and Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports. 7: 42039.
Jiang, Q., Roche, D., Monaco, T.A. and Durham, S. (2006). Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Research. 96(2): 269-278.
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P. and Chen, J.-T. (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences. 21(1): 148.
Kaur, S. and Nayyar, H. (2015). Selenium fertilization to salt-stressed mungbean (Vigna radiata (L.) Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Scientia Horticulturae. 197: 304-317.
Kong, L., Wang, M. and Bi, D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation. 45(2): 155-163.
Leyva, R., Sánchez-Rodríguez, E., Ríos, J.J., Rubio-Wilhelmi, M.M., Romero, L., Ruiz, J.M. and Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science. 181(2): 195-202.
Lichtenthaler, H. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymology. 148: 350-382.
Lutts, S., Kinet, J. and Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78(3): 389-398.
Malik, J. A., Kumar, S., Thakur, P., Sharma, S., Kaur, N., Kaur, R., Pathania, D., Bhandhari, K., Kaushal, N., Singh, K., Srivastava, A. and Nayyar, H. (2011). Promotion of growth in Mungbean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biological Trace Element Research. 143(1): 530-539.
Mostofa, M. G., Hossain, M. A., Siddiqui, M. N., Fujita, M. and Tran, L.-S. P. (2017). Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere. 178: 212-223.
Nawaz, F., Ahmad, R., Ashraf, M., Waraich, E. and Khan, S. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety. 113: 191-200.
Nawaz, F., Naeem, M., Ashraf, M. Y., Tahir, M. N., Zulfiqar, B., Salahuddin, M., Shabbir, R. N. and Aslam, M. (2016). Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Frontiers in Plant Science. 7: 1438.
Naz, F.S., Yusuf, M., Khan, T.A., Fariduddin, Q. and Ahmad, A. (2015). Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chemistry. 185: 441-448.
Nothstein, A.K., Eiche, E., Riemann, M., Nick, P., Winkel, L.H.E., Göttlicher, J., Steininger, R., Brendel, R., von Brasch, M., Konrad, G. and Neumann, T. (2016). Tracking Se assimilation and speciation through the rice plant e nutrient competition, toxicity and distribution. PLOS One, 11(4): 1-15.
Rady, M.M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae. 129(2): 232-237.
Rady, M.M., Desoky, E.-S., Elrys, A. and Boghdady, M. (2019). Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? South African Journal of Botany. 121: 294-305.
Ritchie, S.W., Nguyen, H.T. and Holaday, A. S. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Science. 30(1): 105-111.
Shahid, M.A., Balal, R.M., Pervez, M. A., Garcia-Sanchez, F., Gimeno, V., Abbas, T., Mattson, N.S. and Riaz, A. (2014). Treatment with 24-epibrassinolide mitigates NaCl-induced toxicity by enhancing carbohydrate metabolism, osmolyte accumulation, and antioxidant activity in Pisum sativum. Turkish Journal of Botany. 38(3): 511-525.
Shekari, F., Abbasi, A. and Mustafavi, S. H. (2015). Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. Journal of the Saudi Society of Agricultural Sciences. 16: 367-374.
Wani, A.S., Tahir, I., Ahmad, S.S., Dar, R. A. and Nisar, S. (2017). Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Scientia Horticulturae. 225: 48-55.
Yousefzadeh, S., Modarres-Sanavy, S. A. M., Sefidkon, F., Asgarzadeh, A., Ghalavand, A. and Sadat-Asilan, K. (2013). Effects of Azocompost and urea on the herbage yield and contents and compositions of essential oils from two genotypes of dragonhead (Dracocephalum moldavica L.) in two regions of Iran. Food Chemistry. 138(2): 1407-1413.
Zhu, Y., G., Huang, Y., Hu, Y., Liu, Y. and Christie, P. (2004). Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant and Soil. 261(1-2): 99-105.
_||_
Abbas, S.M. (2013). Low levels of selenium application attenuate low temperature stress in sorghum (Sorghum Bicolor (L.) Moench.) seedlings. Pakistan Journal of Botany. 45(5): 1597-1604.
Agami, R.A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany. 88: 171-177.
Ahmad, P., Allah, E.A., Hashem, A., Sarwat, M. and Gucel, S. (2016). Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern & Cross) by up-regulating antioxidative system and secondary metabolites. Journal of Plant Growth Regulation. 35(4): 936-950.
Ashraf, M. and Harris, P. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science. 166(1): 3-16.
Ashraf, M.A., Akbar, A., Parveen, A., Rasheed, R., Hussain, I. and Iqbal, M. (2018). Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry.123: 268-280.
Astaneh, R.K., Bolandnazar, S., Nahandi, F. Z. and Oustan, S. (2017). Effects of selenium on some physiological traits and K, Na concentration of garlic (Allium sativum L.) under NaCl stress. Information Processing in Agriculture. 5(1): 156-161.
Bates, L., Waldren, R. and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1): 205-207.
Chen, T., Zheng, W., Luo, Y., Yang, F., Bai, Y. and Tu, F. (2005). Effects of selenium stress on photosynthetic pigment contents and growth of Chlorella vulgaris. Journal of Plant Physiology and Molecular Biology. 31(4): 369-373.
Chutipaijit, S., Cha-um, S. and Sompornpailin, K. (2011). High contents of proline and anthocyanin increase protective response to salinity in 'Oryza sativa' L. spp. 'indica'. Australian Journal of Crop Science. 5(10): 1191-1198.
Dalio, R.J.D., Pinheiro, H.P., Sodek, L. and Haddad, C.R.B. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiologiae Plantarum. 33(5): 1887-1896.
Dastmalchi, K., Dorman, H. D., Koşar, M. and Hiltunen, R. (2007). Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT-Food Science and Technology. 40(2): 239-248.
Diao, M., Ma, L., Wang, J., Cui, J., Fu, A. and Liu, H.-y. (2014). Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation. 33(3): 671-682.
Djanaguiraman, M., Devi, D.D., Shanker, A. K., Sheeba, J.A. and Bangarusamy, U. (2005). Selenium-an antioxidative protectant in soybean during senescence. Plant and Soil. 272(1-2): 77-86.
Djanaguiraman, M., Prasad, P. and Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry. 48(12): 999-1007.
Feng, R., Wei, C. and Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany. 87: 58-68.
Filek, M., Keskinen, R., Hartikainen, H., Szarejko, I., Janiak, A., Miszalski, Z. and Golda, A. (2008). The protective role of selenium in rape seedlings subjected to cadmium stress. Journal of Plant Physiology. 165(8): 833-844.
Han, D., Li, X., Xiong, S., Tu, S., Chen, Z., Li, J. and Xie, Z. (2013). Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environmental and Experimental Botany. 95: 6-14.
Handa, N., Kohli, S. K., Thukral, A. K., Bhardwaj, R., Alyemeni, M. N., Wijaya, L. and Ahmad, P. (2018). Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotechnology.8(1): 66.
Hasanuzzaman, M., Hossain, M.A. and Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research. 143(3): 1704-1721.
Hawrylak-Nowak, B. (2009). Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research. 132(1-3): 259-269.
Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125(1): 189-198.
Iqbal, N., Umar, S., Khan, N. A. and Khan, M.I.R. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environmental and Experimental Botany. 100: 34-42.
Irigoyen, J., Einerich, D. and Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiologia Plantarum. 84(1): 55-60.
Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H. and Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports. 7: 42039.
Jiang, Q., Roche, D., Monaco, T.A. and Durham, S. (2006). Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Research. 96(2): 269-278.
Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P. and Chen, J.-T. (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences. 21(1): 148.
Kaur, S. and Nayyar, H. (2015). Selenium fertilization to salt-stressed mungbean (Vigna radiata (L.) Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Scientia Horticulturae. 197: 304-317.
Kong, L., Wang, M. and Bi, D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation. 45(2): 155-163.
Leyva, R., Sánchez-Rodríguez, E., Ríos, J.J., Rubio-Wilhelmi, M.M., Romero, L., Ruiz, J.M. and Blasco, B. (2011). Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science. 181(2): 195-202.
Lichtenthaler, H. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymology. 148: 350-382.
Lutts, S., Kinet, J. and Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78(3): 389-398.
Malik, J. A., Kumar, S., Thakur, P., Sharma, S., Kaur, N., Kaur, R., Pathania, D., Bhandhari, K., Kaushal, N., Singh, K., Srivastava, A. and Nayyar, H. (2011). Promotion of growth in Mungbean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biological Trace Element Research. 143(1): 530-539.
Mostofa, M. G., Hossain, M. A., Siddiqui, M. N., Fujita, M. and Tran, L.-S. P. (2017). Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere. 178: 212-223.
Nawaz, F., Ahmad, R., Ashraf, M., Waraich, E. and Khan, S. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety. 113: 191-200.
Nawaz, F., Naeem, M., Ashraf, M. Y., Tahir, M. N., Zulfiqar, B., Salahuddin, M., Shabbir, R. N. and Aslam, M. (2016). Selenium supplementation affects physiological and biochemical processes to improve fodder yield and quality of maize (Zea mays L.) under water deficit conditions. Frontiers in Plant Science. 7: 1438.
Naz, F.S., Yusuf, M., Khan, T.A., Fariduddin, Q. and Ahmad, A. (2015). Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chemistry. 185: 441-448.
Nothstein, A.K., Eiche, E., Riemann, M., Nick, P., Winkel, L.H.E., Göttlicher, J., Steininger, R., Brendel, R., von Brasch, M., Konrad, G. and Neumann, T. (2016). Tracking Se assimilation and speciation through the rice plant e nutrient competition, toxicity and distribution. PLOS One, 11(4): 1-15.
Rady, M.M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae. 129(2): 232-237.
Rady, M.M., Desoky, E.-S., Elrys, A. and Boghdady, M. (2019). Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? South African Journal of Botany. 121: 294-305.
Ritchie, S.W., Nguyen, H.T. and Holaday, A. S. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Science. 30(1): 105-111.
Shahid, M.A., Balal, R.M., Pervez, M. A., Garcia-Sanchez, F., Gimeno, V., Abbas, T., Mattson, N.S. and Riaz, A. (2014). Treatment with 24-epibrassinolide mitigates NaCl-induced toxicity by enhancing carbohydrate metabolism, osmolyte accumulation, and antioxidant activity in Pisum sativum. Turkish Journal of Botany. 38(3): 511-525.
Shekari, F., Abbasi, A. and Mustafavi, S. H. (2015). Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. Journal of the Saudi Society of Agricultural Sciences. 16: 367-374.
Wani, A.S., Tahir, I., Ahmad, S.S., Dar, R. A. and Nisar, S. (2017). Efficacy of 24-epibrassinolide in improving the nitrogen metabolism and antioxidant system in chickpea cultivars under cadmium and/or NaCl stress. Scientia Horticulturae. 225: 48-55.
Yousefzadeh, S., Modarres-Sanavy, S. A. M., Sefidkon, F., Asgarzadeh, A., Ghalavand, A. and Sadat-Asilan, K. (2013). Effects of Azocompost and urea on the herbage yield and contents and compositions of essential oils from two genotypes of dragonhead (Dracocephalum moldavica L.) in two regions of Iran. Food Chemistry. 138(2): 1407-1413.
Zhu, Y., G., Huang, Y., Hu, Y., Liu, Y. and Christie, P. (2004). Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant and Soil. 261(1-2): 99-105.