Optical Coherence Tomography: A Brief Review
Subject Areas :
Advanced Optical Techniques for Clinical Medicine
Nasser Moslehi Milani
1
1 - Department of physics, Ahar Branch, Islamic Azad University, Ahar, Iran
Received: 2023-09-08
Accepted : 2023-09-21
Published : 2023-09-22
Keywords:
cross-sectional imaging,
low coherence interferometry,
superluminescent light emitting diodes,
ocular imaging,
optical coherence microscopy,
Abstract :
Optical coherence tomography (OCT) is a new imaging technique with a significant role in the field of medicine. It is a light-based non-invasive imaging method that provides high quality cross-sectional and volumetric images. OCT technology was introduced in the early 1990s and advanced to produce quicker obtaining times and higher resolution. In this article we discuss some of the recent advancements in OCT imaging systems. We will review a brief history and first operating principles including light coherence interferometry (LCI), time domain optical coherence tomography (TD-OCT) and Fourier domain optical coherence tomography (FD-OCT) contains two types: spectral domain optical coherence tomography (SD-OCT) and swept source optical coherence tomography (SS-OCT). Also we review recent emerging innovative OCT systems including Doppler OCT, polarization sensitive optical coherence tomography (PS-OCT), high resolution optical coherence tomography (HR-OCT), full field optical coherence tomography (FF-OCT), wide field optical coherence tomography (WF-OCT), optical coherence elastography (OCE), adaptive optics optical coherence tomography (AO-OCT), visible light optical coherence tomography (Vis-OCT), intraoperative optical coherence tomography (iOCT), hand-held optical coherence tomography (HH-OCT), and OCT in needle format.
References:
Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, pp. 1178–1181, 1991.
Kostanyan, G. Wollstein, and J. S. Schuman, “New developments in optical coherence tomography,” Current opinion in ophthalmology, vol.26, pp. 110, 2015.
F. Fercher and E. Roth, “Ophthalmic laser interferometry,” In Optical instrumentation for biomedical laser applications, vol. 658, pp. 48-51. 1986.
K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Investigative ophthalmology & visual science, vol. 32, pp. 616-624, 1991.
G. Fujimoto, S. de Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, “Femtosecond optical ranging in biological systems,” Optics letters, vol.11, pp. 150-152, 1986.
Everett, S. Magazzeni, T. Schmoll, and M. Kempe, “Optical coherence tomography: From technology to applications in ophthalmology,” Translational Biophotonics, vol.3, pp. e202000012, 2021.
Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High-quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Optics express, vol. 18, pp. 14685-14704, 2010.
Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, , “High-quality 3-D imaging with multimegahertz OCT,” Optics and Photonics News, vol. 21, pp. 28-28, 2010.
S. Kim, J. Joo, I. Shin, P. Shin, W. J. Kang, B. J. Vakoc, and W. Y. Oh, “9.4 MHz A-line rate optical coherence tomography at 1300 nm using a wavelength-swept laser based on stretched-pulse active mode-locking,” Scientific Reports, vol. 10, pp. 9328 (1-9), 2020.
Grelet, P. B. Montague, and A. Podoleanu, “Towards sub-5 µm axial resolution OCT from a multi-MHz swept source,” In High-Speed Biomedical Imaging and Spectroscopy VIII, Vol. 12390, pp. 43-46, 2023.
F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun., vol. 117, pp. 43–48, 1995.
Brinkmeyer and R. Ulrich, “High-resolution OCDR in dispersive wave-guides,” Electronics Letters, vol.6, pp. 413–414, 1990.
R. Chinn, E.A. Swanson, and J.G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. vol. 22, pp.340–342, 1997.
Golubovic, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser,” Opt. Lett. vol. 22, pp. 1704–1706, 1997.
F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Optics communications, vol. 117, pp. 43-48, 1995
C. K. H. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Applied optics, vol.36, pp.6548-6553, 1997.
Hausler, and M. W. Lindner, “"Coherence radar" and "spectral radar" -new tools for dermatological diagnosis,” Journal of biomedical optics, vol. 3, pp.21-31, 1998.
Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” Journal of biomedical optics, vol.7, pp. 457-463. 2002.
P. Ivanov, A. P. Chaikovskii, and A. A. Kumeisha, “New method for high-range resolution measurements of light scattering in optically dense inhomogeneous media,” Optics Letters, vol. 1, pp.226-228, 1977.
K. Hitzenberger. Low-coherence interferometry from: Handbook of Visual Optics CRC Press, 2017.
M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Applied optics, vol.37, pp. 2788-2797, 1998.
K. Wang, “Modelling optical properties of soft tissue by fractal distribution of scatterers,” Journal of Modern Optics, vol.47, pp. 103-120, 2000.
K. Wang and Z. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Optics letters, vol.31, pp. 3001-3003, 2006.
Leitgeb, C.K. Hitzenberger, and A.F. Fercher, “Performance of fourier domain vs. time domainoptical coherence tomography,” Opt. Express, vol.11, pp.889–894, 2003.
F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. vol. 28, pp. 2067–2069, 2003.
A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, vol. 11, pp. 2183–2189, 2003.
Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 7, 2015.
F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Reports on progress in physics, vol.66, pp. 239–303, 2003.
Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 9, 2015.
Aumann, S. Donner, J. Fischer, and F. Müller, “Optical coherence tomography (OCT): principle and technical realization,” High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics, pp.59-85, 2019.
T. Schwarz, F. Kopp, T. Weig, C. Eichler, and U.Strauss, “Superluminescent light emitting diodes of 100mW output power for pico-projection,” Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Optical Society of America, MH2-3, 2013.
M. Milani, A. Asgari, “The effects of carrier transport phenomena on the spectral and power characteristics of blue superluminescent light emitting diodes,” Physica E, vol.69, pp. 165-170,2015.
N. Kurbatov, S. S. Shakhidzhanv, L. V. V. krapukhin, and S. I. Kolonenkova, “Investigation of superluminescence emitted by a gallium arsenide diode,” Sov. Phys. Semicond. vol.4, pp. 1739, 1971.
C. Culter, S.A. Newton, H.J. Show, “Limitation of rotation sensing by scattering,” Opt. Lett. vol. 5, pp. 488–490, 1980.
Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, 2015.
M. Milani, V. Mohadesi, A. Asgari, “The effects of temperature dependent recombination rates on performance of InGaN/GaN blue superluminescent light emitting diodes,” Physica E, vol.71, pp.64-69, 2015.
M. Milani, V. Mohadesi, and A. Asgari, "A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes," Journal of Applied Physics, vol.117, pp.054502, 2015.
Matuschek and M. Duelk, “Modeling and simulation of superluminescent light-emitting diodes (SLEDs),” IEEE J. Sel. Top. Quantum Electron. vol. 19, pp. 7800307, 2013.
thorlabs.com
R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency tunable optical source,” Opt. Lett. vol.22, pp. 340–342 1997.
A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, vol.11, pp. 2183–2189, 2003.
H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express, vol.11, pp. 2953–2963, 2003.
Klein and R. Huber, “High-speed OCT light sources and systems,” Biomedical optics express, vol. 8, pp. 828-859, 2017.
Chen, B. Potsaid, Y. Li, J. Lin, Y. Hwang, E. M. Moult, J. Zhang, D. Huang, and J. G. Fujimoto, “High speed, long range, deep penetration swept source OCT for structural and angiographic imaging of the anterior eye,” Scientific Reports, vol.12, pp. 992 (1-14), 2022.
Zheng, Y. Bai, Z. Xu, P. Liu, and G. Ni, “Optical coherence tomography for three-dimensional imaging in the biomedical field: a review,” Frontiers in Physics, pp. 552 (1-13), 2021.
Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 46, 2015.
Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed. Switzerland: Springer International Publishing, Ch. 41, 2015.
Chen, Functional optical coherence tomogoraphy, in Frontiers in Biomedical Engineering, Ed. by N. H. C. Hwang, S. L. -Y. Woo Kluwer Academic/Plenum, New York, 2003.
Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. vol. 22, pp. 64–66, 1997.
J. Srinivasan, S. Sakadzic, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express, vol.18, pp. 2477–2494, 2010
A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Optics Express, vol. 11, pp. 3116-3121, 2003.
R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” Optics express, vol. 11, pp.3490-3497, 2003.
Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Optics letters, vol. 25, pp. 1448-1450, 2000.
A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Optics letters, vol. 29, 171-173, 2004.
Ong, A. Zarnegar, G. Corradetti, S. R. Singh, and J. Chhablani, “Advances in optical coherence tomography imaging technology and techniques for choroidal and retinal disorders,” Journal of Clinical Medicine, vol. 11, pp. 5139, 2022.
H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. vol. 6, pp. 474–479, 2001.
Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. vol. 27, pp. 1610–1612, 2002.
Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. vol. 45, pp. 2606–2612, 2004.
Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, and C. Le, “Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography,” J. Biomed. Opt. vol. 7, pp. 618–627, 2002.
Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Optics express, vol. 17, pp.4151-4165, 2009.
Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt Express, vol.18, pp.13964–13980, 2010.
G. Sayegh, S. Zotter, P. K. Roberts, M. M. Kandula, S. Sacu, D. P. Kreil, B. Baumann, M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization-Sensitive Optical Coherence Tomography and Conventional Retinal Imaging Strategies in Assessing Foveal Integrity in Geographic Atrophy,” Investig. Ophthalmol. Vis. Sci, vol. 56, pp. 5246–5255, 2015.
Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. vol. 30, pp. 431–451, 2011.
Ueno, H. Mori, K. Kikuchi, M. Yamanari, and T. Oshika, “Visualization of Anterior Chamber Angle Structures With Scattering- and Polarization-Sensitive Anterior Segment Optical Coherence Tomography,” Transl. Vis. Sci. Technol. vol.10, pp. 1-9 2021,
Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. vol. 9, pp. 47–74, 2004.
F. Spaide and D. R. Lally, “High Resolution Spectral Domain Optical Coherence Tomography of Multiple Evanescent White Dot Syndrome,” Retinal Cases and Brief Reports, 2022.
Drexler and J. G. Fujimoto, Eds. Optical coherence tomography: technology and applications. 2nd ed, Switzerland: Springer International Publishing, Ch. 25, 2015.
Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. vol. 27, pp. 530–532, 2002.
Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. vol. 41, pp. 805–812, 2002.
Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. vol. 43, pp.2874–2882, 2004.
Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. vol. 49, pp. 1227–1234, 2004.
Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. vol. 23, pp. 244–246, 1998.
Grieve, O. Thouvenin, A. Sengupta, V. M. Borderie, and M. Paques, “Appearance of the Retina With Full-Field Optical Coherence Tomography,” Investig. Ophthalmol. Vis. Sci. vol. 57, OCT96–OCT104, 2016.
Song, J. Xu, and R. K. Wang, “Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source,” Biomed. Opt. Express, vol.7, pp.4734–4748, 2016.
Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express, vol. 19, pp. 3044–3062, 2011.
Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt Express. vol. 14, pp. 3225–3237, 2006.
J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. vol. 56, R1, 2011.
M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express, vol. 3, pp. 199–211, 1998.
Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging, vol. 13, pp. 111–134, 1991.
Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science, vol. 269, pp. 1854–1857, 1995.
W. Babcock, “The possibility of compensating astronomical seeing,” In Publications of the Astronomical Society of the Pacific, 386th Ed.; The Astronomical Society of the Pacific: San Francisco, WI, USA, vol. 65, pp. 229–236, 1953.
Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, and P. S. J. Russell, “Submicrometer axial resolution optical coherence tomography,” Optics letters, vol. 27, pp.1800-1802, 2002.
Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light: Science & Applications, vol. 4, pp. e334-e334, 2015.
P. Ehlers, D. S. Petkovsek, A. Yuan, R. P. Singh, and S. K. Srivastava, “Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT,” Ophthalmic Surg. Lasers Imaging Retin. vol. 46, pp. 327–332, 2015.
S. Grewal, O. M. Carrasco-Zevallos, R. Gunther, J. A. Izatt, C. A. Toth, and P. Hahn, “Intra-operative microscope-integrated swept-source optical coherence tomography guided placement of Argus II retinal prosthesis,” Acta Ophthalmol. vol.95, pp. e431–e432, 2017.
A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography,” Radiology, vol. 208, pp. 81–86, 1998.
A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery, vol. 43, pp. 834–841, 1998.
Song, K. K. Chu, S. Kim, M. Crose, B. Cox, E. T. Jelly, J. N. Ulrich, and A. Wax, “First Clinical Application of Low-Cost OCT. Transl,” Vis. Sci. Technol. vol.8, p.61, 2019.
R. Rufai, “Handheld optical coherence tomography removes barriers to imaging the eyes of young children,” Eye, vol. 36, pp. 907–908, 2022.
Nicholson, D. Osborne, L. Fairhead, L. Beed, C. M. Hill, and H. Lee, “Segmentation of the foveal and parafoveal retinal architecture using handheld spectral-domain optical coherence tomography in children with Down syndrome,” Eye, vol. 36, pp. 963–968, 2022.
S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Investig. Ophthalmol. Vis. Sci., vol. 51, pp. 2678–2685, 2010.
Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. vol. 119, pp. 1179 (1-7), 2001.
Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. vol. 25, pp. 1520–1522, 2000.
A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. vol. 18, pp. 1184–1191, 2012.
V. Iftimia, B. E. Bouma, M. B. Pitman, B. Goldberg, J. Bressner, and G. J. Tearney, “A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance,” Rev. Sci. Instrum. vol. 76, pp. 064301–064306 (1-7), 2005.
A. McLaughlin, X. Yang, B. C. Quirk, D. Lorenser, R. W. Kirk, P. B. Noble, and D. D. Sampson, “Static and dynamic imaging of alveoli using optical coherence tomography needle probes,” J. Appl. Physiol. vol. 113, pp. 967–974, 2012.
Tan, M. Shishkov, A. Chee, M. Applegate, B. Bouma, and M. Suter, “Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance,” Biomed. Opt. Express, vol. 3, pp. 1947–1954, 2012.
Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. vol. 13, p. 020505 (1-3), 2008.
Zhao, Y. Huang, and J. U. Kang, “Sapphire ball lens-based fiber probe for common-path optical coherence tomography and its applications in corneal and retinal imaging,” Opt. Lett. vol. 37, pp. 4835–4837, 2012.
S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. “Schmitt, Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. vol. 10, pp. 051603 (1-11), 2005.
Sun, K. K. Lee, B. Vuong, M. D. Cusimano, A. Brukson, A. Mauro, N. Munce, B. K. Courtney, B. A. Standish, and V. X. Yang, “Intraoperative handheld optical coherence tomography forward-viewing probe: physical performance and preliminary animal imaging,” Biomed. Opt. Express, vol. 3, pp. 1404 (1-9), 2012.