روابط متقابل میان جانداران خاک و تغییرات اقلیمی و کاربرد تجزیههای متا در تفسیر آن: مروری سیستماتیک
محورهای موضوعی : آب و محیط زیستزاهد شریفی 1 , علی اکبر صفری سنجانی 2
1 - استادیار، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران. *(مسئوول مکاتبات).
2 - استاد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.
کلید واژه: جانداران خاک, تغییرات اقلیم, مرور سیستماتیک, آنالیزهای متا,
چکیده مقاله :
ریزجانداران خاک در تولید و مصرف گازهای گل خانه ای یعنی دی اکسید کربن(CO2) ، متان(CH4) ، نیتروس اکسید (N2O)و نیتریک اکسید (NO)، نقش اساسی دارند. از طرف دیگر دلایل معتبری وجود دارد که تغییرات آب و هوا به گونه مستقیم و غیر مستقیم می تواند فراوانی و ساختار جامعه زنده خاک را دگرگون سازد. به گونه ای که نتایج حاصل از مرور سیستماتیک نشان داد که اثرات عمده مستقیم تغییرات آب و هوا بر روی جامعه میکروبی خاک احتمالاً به علت تغییر در میزان رطوبت و درجه حرارت است؛ در حالی که اثر افزایش (CO2)اتمسفر بر روی جامعه میکروبی خاک بیش تر به گونه غیرمستقیم، و از طریق اثری که این گاز بر روی افزایش فتوسنتز گیاهان دارد، می باشد، که این موضوع به نوبه خود می تواند سبب تغییر در کمیت و کیفیت کربن آلی وارد شده به خاک شود. به هر گونه، جانداران خاک بسته به نوع، اندازه بدن، عادت تغذیه ای، نوع اکوسیستم، اقلیم محلی و میزان بزرگی و طول دوره پارامتر اقلیمی پاسخ های متفاوتی را در برابر دگرگونی های اقلیمی از خود نشان می دهند. به گونه ای که نتایج آنالیزهای متا نشان می دهد که پاسخ جانداران خاک به افزایش میزان (CO2) اتمسفر به اندازه بدن، گروه تغذیه ای و نوع رویکرد آزمایش (مزرعه ای یا گل خانه ای) وابسته است. در حالی که چگونگی پاسخ جانداران خاک به تغییرات دما و بارندگی به اقلیم محلی و نوع اکوسیستم وابسته است. هم چنین اثرات افزایش(CO2) بر فراوانی جانداران خاک با زمان کاهش می یابد؛ در حالی که اثر دما و تغییر در بارندگی با زمان شدت می یابد.
Soil microorganisms have important role at production and consumption of greenhouse gases,such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO). On theother hand, there are valid reasons that climate changes can directly or indirectly alter the compositionand abundance of soil microbial communities. So that, the results of the systematic review showed thatthe main direct effects of climate changes on soil microbial communities are likely to be caused bychanges in temperature and moisture content. Howevr, the effects of increased CO2 levels onmicrobial communities are often indirect, as they are mediated by positive effects of the gas on plantphotosynthesis, which in turn changes in quantity and quality of soil C inputs. Any way, depending onthe taxonomy, body size, feeding habits, ecosystem type, local climate, treatment magnitude andduration, the patterns respons of the soil organisms in against of climate change parameters are differ.So that, the results of meta-analysis has show that the response of soil biota to elevated CO2, is dependon the trophic group, body size, and experimental approaches (field or greenhouse). Whereas, theresponse of soil biota to warming and altered precipitation are depend on local climate and ecosystemtype. Furthermore, the effects of increase CO2 on soil organism abundance diminished with time,however the effects of warming and altered precipitation intensified with time
- Burdass, Dariel., 1998. Microbes and Climate Change – A resource for secondary schools. Edited by Janet Hurst.
- Six, J., Carpentier, A., van Kessel, C., Merckx, Harris, D., Horwath, W.R., Luscher, A., 2001. Impact of elevated CO2 on soil organic matter dynamics as related to changes in aggregate turnover and residue quality. Plant Soil Vol. 234, pp. 27-36.
- Panikov, N.S. 1999. Understanding and prediction of soil microbial community dynamics under global change. Applied Soil Ecology Vol. 11, pp. 161-176.
- Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geosci. Vol. 3, pp. 336-340.
- Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O.W., Dhillion, S., 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil. Biol. Vol. 33, pp. 159-193.
- Schlesinger, W.H., Andrews, J.A., 2000. Soil respiration and the global carbon cycle. Biogeochemistry Vol. 48, pp. 7-20.
- Chapin, F.S., Walker, B.H., Hobbs, R.J., Hooper, D.U., Lawton, J.H., Sala, OE., Tilman, D., 1997. Biotic control over the functioning of ecosystems. Science Vol. 277, pp. 500-504.
- Pritchard, S.G. and refrences therein., 2011. Soil organisms and global climate change. Plant Pathology Vol. 60, pp. 82-99.
- صفریسنجانی ، علیاکبر، «بیولوژی و بیوشیمی خاک»، چاپ سوم، انتشارات دانشگاه بوعلی سینا، 1390؛ 583 صفحه.
- Bushby, H.V.A., Marshall, K.C., 1977. Some factors affecting the survival of root-nodule bacteria on desiccation. Soil Biol Biochem Vol. 9, pp. 143-147.
- Denef, K., Six, J., Bossuyt, H., Frey, SD., Elliott, E.T., Merckx, R., Paustian, K., 2001. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem Vol. 33, pp. 1599-1611.
- Hattori, T., 1988. Soil aggregates in microhabitats of microorganisms. Rep Inst Agric Res Tohoku Univ Vol. 37, pp. 23-36.
- Savin, M.C., Gorres, J.H., Neher, D.A., Amador, J.A., 2001. Biogeophysical factors influencing soil respiration and mineral nitrogencontent in an old field soil. Soil Biol Biochem Vol. 33, pp. 429-438.
- Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA., 2009. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem Vol. 41, pp. 2052-2060.
- Strickland, M.S., Rousk, J., 2010. Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biol Biochem Vol. 42, pp. 1385-1395.
- West, A.W., Sparling, G.P., Feltham, C.W., Reynolds, J., 1992. Microbial activity and survival in soil dried at different rates. Aust. J. Soil Res. Vol. 30, pp. 209-222.
- Van Gestel, M., Merckx, R., Vlassak, K., 1996. Spatial distribution of microbial biomass in microaggregates of a silty-loam soil and the relation with the resistance of microorganisms to soil drying. Soil Biol Biochem Vol. 28, pp. 503-510.
- صفاری، محسن، و همکاران، «چگونه یک مرور سیستماتیک در زمینه سلامت انجام دهیم: یک مرور توصیفی»، شماره 1.فصل نامه علمی پژوهشی آموزش بهداشت وارتقاء سلامت. 1392؛ صفحه 51 تا 61.
- Glass, G.V., 1976. Primary, Secondary and Meta_Analysis. Educational Research, 5.
- Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma Vol. 123, pp. 1-22.
- Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature Vol. 440, pp. 165-73.
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge Univ. Press, Cambridge, UK, 2007).
- Willey, J.M., Sherwood, L.M., Woolverton, C.J., 2009. Prescott’s Principles of Microbiology. McGraw-Hill, New York, NY.
- Leininger, S., et al., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature Vol. 442, pp. 806-809.
- Teske, A., et al., 1994. Evolutionary relationships among ammonia-oxidizing and nitrite-oxidizing bacteria. J. Bacteriol. Vol. 176, pp. 6623–6630.
- Yeates, G.W., Newton, P.C.D., 2009. Long-term changes in topsoil nematode populations in grazed pasture under elevated atmospheric carbon dioxide. Biology and Fertility of Soils Vol. 45, pp. 799-808.
- Schimel, J.P., Gulledge, J. 1998. Microbial community structure and global trace gases. Glob. Chang. Biol. Vol. 4, pp. 745-758.
- Singh, B.K., Bardgett, R.D., Smith, P., Reay, D.S., 2010. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature reviews / microbiology, Vol. 8, pp. 779-790.
- Smith, P., et al., 1998. Soil biota and global change at the ecosystem level: describing soil biota in mathematical models. Glob. Chang. Biol. Vol. 4, pp. 773–784.
- رفیع، محمدجعفر، (مترجم). «فیزیک خاک»، مولف هلموت کهنک، چاپ سوم، انتشارات دانشگاه تهران، 1370؛ 296صفحه.
- Bardgett, R. D., De Deyn, G.B. Ostle, N.J., 2009. Plant–soil interactions and the carbon cycle. J. Ecol. Vol. 97, pp. 838-839.
- Button, D.K., 1991. Biochemical basis for whole-cell uptake kinetics - specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl. Environ. Microbiol. Vol. 57, pp. 2033-2038.
- Couteaux, M.M., Mousseau, M., Celerier, M.L., Bottner, P., 1991. Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos Vol. 61, pp. 54-64.
- Hattenschwiler, S., Buhler, S., Korner, C., 1999. Quality, decomposition and isopod consumption of tree litter produced under elevated CO2. Oikos Vol. 85, pp. 271-81.
- Wardle, D.A., 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton, NJ, USA: Princeton University Press.
- Luo, Y., Su, B., Currie, W.S., 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bio. Science Vol. 54, pp. 731-9.
- Luo, Y., Wan, S., Hui, D., Wallace, L.L., 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature Vol. 413, pp. 622-625.
- Diaz, S., Grime, J.P., Harris, J. Mcpherson, E. 1993. Evidence of a feedback mechanism limiting plantresponseto elevated carbon-dioxide. Nature Vol. 364, pp. 616-617.
- Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70, pp. 555-569.
- French, S., Levy-Booth, D., Samarajeewa, A., Shannon, K.E., Smith, J., Trevors, J.T., 2009. Elevated temperatures and carbon dioxide concentrations: effects on selected microbial activities in temperate agricultural soils. World Journal of Microbiology and Biotechnology Vol. 25, pp. 1887-900.
- Van der Heijden, M.G.A., Bardgett, R.D., van Straalen, N.M., 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. Vol. 11, pp. 296-310.
- Balser, T.C., Wixon, D.L., 2009. Investigating biological control over soil carbon temperature sensitivity. Global Change Biology Vol. 15, pp. 2935–49.
- Drigo, B., Kowalchuk, G.A., van Veen, J.A., 2008. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soil Vol. 44, pp. 667-79.
- Hu, S., Chapin, F.S., Firestone, M.K., Field, C.B., Chiariello, N.R., 2001. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature Vol. 409, pp. 188-91.
- Jackson, R., Cook, C., Pippen, J., Palmer, S., 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology Vol. 90, pp. 3352-3366.
- Norby, R.J., Ledford, J., Reilly, C.D., Miller, N.E., O’Neill, E.G., 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences, USA Vol. 101, pp. 9689-93.
- Alberton, O., Kuyper, T.W., Gorissen, A., 2005. Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytologist Vol. 167, pp. 859-68.
- Treseder, K.K., 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist Vol. 164, pp. 347-55.
- Drigo, B., van Veen, J.A., Kowalchuk, G.A., 2009. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2. The ISME Journal Vol. 3, pp. 1204-17.
- Rogers, A., Ainsworth, E.A., Leakey, A.D.B., 2009. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology Vol. 151, pp. 1009-16.
- Serraj, R., Sinclair, T.R., Allen, L.H., 1998. Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment. Plant, Cell and Environment Vol. 21, pp. 491-500.
- Schortemeyer, M., Hartwig. U., Hendry, G., Sadowsky, M.J., 1996. Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biology and Biochemistry Vol. 28, pp. 1717-24.
- Allen, L.H., 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. Journal of Environmental Quality. Vol. 19, pp. 15–34.
- Ineson, P., Benham, D.G., Poskitt, J., Harrison, A.F., Taylor, K., Woods, C., 1998a. Effects of climate change on nitrogen dynamics in upland soils. 2. A warming study. Global Change Biology Vol. 4, pp. 153-61.
- Phillips, R.L., Whalen, S.C., Schlesinger, W.H., 2001. Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Glob. Chang. Biol. Vol. 7, pp. 557-563.
- Barnard, R., Barthes, L., Le Roux., X., Leadley, P.W., 2004. Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2. New Phytol. Vol. 162, pp. 365-376.
- Barnard, R., Leadley, P., Hungate, B., 2005. Global change nitrification and denitrification: a review. Global Biogeochem. Cycles 19, GB1007.
- Cheng, W.G., Yagi, K., Sakai, H., Kobayashi, K. 2006. Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry Vol. 77, pp. 351-373.
- Hungate, B.A., Lund, C.P., Pearson, H.L., Chapin, F.S., 1997. Elevated CO2 and nutrient addition alter soil N cycling and N trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry Vol. 37, pp. 89-109.
- Baggs, E.M., Richter, M., Cadisch, G., Hartwig, U.A., 2003. Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol. Biochem. Vol. 35, pp. 729-732.
- Yeates, G.W., Newton, P.C.D, Ross, D.J., 2003. Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biology and Fertility of Soils Vol. 38, pp. 319-26.
- Ayres, E., Wall, DH., Simmons, B.L., et al., 2008. Belowground nematode herbivores are resistant to elevated atmospheric CO2 concentration in grassland ecosystems. Soil Biology and Biochemistry Vol. 40, pp. 978-85.
- Drigo, B., Kowalchuk, G.A., Yergeau, E., Bezemer, T.M., Boschker, H.T.S, Van Veen, J.A., 2007. Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra. Global Change Biology Vol. 13, pp. 2396-410.
- Li, Q., Xu, C., Liang, W., Zhong, S., Zheng, X., Zhu, J., 2009. Residue incorporation and N fertilization affect the response of soil nematodes to elevated CO2 in a Chinese wheat field. Soil Biology and Biochemistry Vol. 41, pp. 1497-503.
- Neher, D.A., Weight, T.R., Moorhead, D.L., Sinsabaugh, R.L., 2004. Elevated CO2 alters functional attributes of nematode communities on forest soils. Functional Ecology Vol. 18, pp. 584-91.
- Sticht C, Schrader S, Giesemann A,Weigel H-J, 2008. Atmospheric CO2 enrichment induces life strategy-and species-specific responses of collembolans in therhizosphere of sugar beet and winter wheat. Soil Biology andBiochemistry Vol. 40, pp. 1432-45.
- Pendall, E., Bridgham, S., Hanson, P.J., et al., 2004. Belowground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist Vol. 162, pp. 447-58.
- شریفی، زاهد، «اثر آلودگی آرسنیک بر برخی از شاخصهای بیولوژیک خاک، و ارزیابی توانایی گیاهان بومی منطقه در گیاهبهسازی آن»، رساله دکتری بیولوژی و بیوتکنولوژی خاک. دانشگاه بوعلی سینا. دانشکده کشاورزی.
- Melillo, J.M., Steudler, P.A., Aber, J.D., Newkirk, K., Lux, H., Bowles, F.P., Catricala, C., Magill, A., Ahrens, T., Morrisseau, S., 2002. Soil Warming and Carbon-Cycle Feedbacks to the Climate System. Science Vol. 298, pp. 2173-2176.
- Monson, R.K., et al. 2006. Winter forest soil respiration controlled by climate and microbial community composition. Nature Vol. 439, pp. 711-714.
- Allison, S.D., Treseder, K.K., 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Chang. Biol. Vol. 14, pp. 2898-2909.
- Bradford, M.A., Davies, C.A., Frey, S.D., Maddox, T.R, Melillo, J.M., Mohan, J.E., Reynolds, J.F., Treseder, K.K., Wallenstein, M.D., 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. Vol. 11, pp. 1316-1327.
- Kirschbaum, M.U.F., 2004. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Chang. Biol. Vol. 10, pp. 1870-1877.
- De Deyn, G.B., Cornelissen, J.H.C., Bardgett, R.D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. Vol. 11, pp. 516-531.
- Meier, I.C., Leuschner, C., 2008. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Chang. Biol. Vol. 14, pp. 2081-2095.
- Zimov, S.A., Schuur, E.A.G., Chapin, F.S. 2006. III. Permafrost and the global carbon budget. Science Vol. 312, pp. 1612-1613.
- Bergner, B., Johnstone, J., Treseder, K.K. 2004. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Glob. Chang. Biol. Vol. 10, pp. 1996–2004.
- Rustad, L.E., et al., 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia Vol. 126, pp. 543-562.
- Bontti, E.A., Decant, J.P., Munson, S.M., Gathany, M.A., Przeszlowska, A., Haddix, M.L., Owens, S., Burke I.C., Parton W.J., Harmon M.E., 2009. Litter decomposition in grasslands of Central North America (US Great Plains). Global Change Biology Vol. 15, pp 1356-1363.
- Butenschoen, O., S. Scheu., N. Eisenhauer., 2011. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biology and Biochemistry Vol. 43, pp. 1902-1907.
- McMichael, B.L., Burke, J.J., 1998. Soil temperature and root growth. HortScience Vol. 33, pp. 947-51.
- Eissenstat, D.M., Wells, C.E., Yanai, R.D.,Whitbeck, J.L., 2000. Building roots in a changing environment: implications for root longevity. New Phytologist Vol. 147, pp. 33-42.
- Forbes, P.J., Black, K.E., Hooker, J.E., 1997. Temperature-induced alteration to root longevity in Lolium perenne. Plant and Soil Vol. 190, pp. 87-90.
- Graefe, S., Hertel, D., Leuschner, C., 2008. Fine root dynamics along a 2,000-m elevation transect in South Ecuadorian mountain rainforests. Plant and Soil Vol. 313, pp. 155-66.
- King, J.S., Pregitzer, K.S., Zak, D.R., 1999. Clonal variation in aboveand below-ground growth responses of Populus tremuloides Michaux: influence of soil warming and nutrient availability. Plant and Soil Vol. 217, pp. 119-30.
- Eissenstat, D.M., Yanai, R.D., 1997. The ecology of root life span. Advances in Ecological Research Vol. 27, pp. 1-62.
- Gill, R.A., Jackson, R.B., 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytologist Vol. 147, pp. 13-31.
- Luo, C., Luis, M., Rodriguez, R., et al., 2013. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Appl. Environ. Microbiol. Vol. 80, pp. 1777-86.
- Balser, T.C., McMahon, D.K., Bart, D., et al., 2006. Bridging the gap between micro- and macro-scale perspectives on the role of microbial communities in global change ecology. Plant and Soil Vol. 289, pp. 59-70.
- Andresen, L.C., Michelsen, A., Jonasson, S., et al., 2010. Plant nutrient mobilization in temperate heathlands responds to elevated CO2, temperature and drought. Plant and Soil Vol. 328, pp. 381-96.
- Fierer, N., Craine, J.M., McLauchlan, K., Schimel, JP., 2005. Litter quality and temperature sensitivity of decomposition. Ecology Vol. 86, pp. 320-6.
- Heinemeyer, A., Ineson, P., Ostle, N., Fitter, A.H., 2006. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist Vol. 171, pp. 159-70.
- Gavito, M.E., Olsson, P.A., Rouhier, H., et. al., 2005. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytologist Vol. 168, pp. 179-88.
- Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.L., Pecot, S.D., Guo, D., 2006. Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal of Ecology Vol. 94, pp. 40-57.
- Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., Fei, S., Deng., S., He, Z., Van Nostrand, J.D., Luo, Y., 2012. Microbial mediation of carbon cycle feedbacks to climate warming. Nature Climate Change, pp. 106-110.
- Nakashima, H., Fukuchi, S., Nishikawa, K., 2003. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. Journal of biochemistry Vol. 133, pp. 507-513.
- Christensen, T.R., et al., 2003. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. Vol. 30, pp. 10-13.
- Avrahami, S., Liesack, W., Conrad, R., 2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. Vol. 5, pp. 691-705.
- Harte, J., Rawa, A., Price, V., 1996. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biology and Biochemistry Vol. 28, pp. 313-22.
100. Phillips, R.L., Whalen, S.C., Schlesinger, W.H., 2001. Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Glob. Chang. Biol. Vol. 7, pp. 557-563.
101. Briones, M.J.I., Ineson, P., Heinemeyer, A., 2007. Predicting potential impacts of climate change on geographical distribution of enchytraeids: a meta-analysis approach. Global Change Biology Vol. 13, pp. 2252–69.
102. Dong, Z., Hou, R., Chen, Q., Ouyang, Z., Ge, F., 2013. Response of soil nematodes to elevated temperature in conventional and no-tillage cropland systems. Plant Soil Vol. 373, pp. 907-918
103. Coulson, S.J., Hodkinson, I.D., Webb, N.R., Block, W., Bale, JS., Strathdee, A.T., Worland, M.R., Wooley, C. 1996. Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol Vol. 16, pp. 147-153.
104. Hodkinson, I.D., Healey, V., Coulson, S., 1994. Moisture relationships of the high arctic collembolan Onychiurus arcticus.Physiol Entomol Vol. 19, pp. 109-114.
105. Knapp, A.K., Beier C., Briske, D.D., Classen, A.T., Luo, Y., Reichstein, M., Smith, M.D., Smith, S.D., Bell J.E., Fay, P.A., Heisler, J.L., Leavitt, S.W., Sherry, R., Smit, B., Weng, E., 2008. Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience. Vol. 58, pp. 811-821.
106. Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D., Harper C.W., 2008. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology Vol. 14, pp. 1600-1608.
107. Fierer., N., Schimel., J.P., 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci. Soc. Am. J. Vol. 67, pp. 798-805.
108. Freeman, C., et al., 2002. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland. Soil Biol. Biochem. Vol. 34, pp. 61-67.
109. Santantonio, D., Herman, R.K., 1985. Standing crop, production, and turnover of fine roots on dry moderate and wet sites of mature Douglas fir sites in Oregon. Annales des Sciences Forestieres Vol. 42, pp. 113-42.
110. Mitchell, R.J., Kirkman, L.K., Pecot, S.D., Wilson, C.A., Palik, B.J., Boring, L.R., 1999. Patterns and controls of ecosystem function in longleaf pine-wiregrass savannas. I. Aboveground net primary productivity. Canadian Journal of Forest Research Vol. 29, pp. 743-51.
111. Comeau, P.G., Kimmon, J.P., 1989. Above and belowground biomass production of lodgepole pine on sites with differing soil moisture regimes. Canadian Journal of Forest Research Vol. 19, pp. 447-54.
112. Gower, S.T., Vogt, K.A., Grier, C.C., 1992. Carbon dynamics of rocky mountain Douglas fir: influence of water and nutrient availability. Ecological Monographs Vol. 62, pp. 43-65.
113. Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.L., Pecot, S.D., Guo, D., 2006. Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal of Ecology Vol. 94, pp. 40-57.
114. Bhatti, M.A., Kraft, J.M., 1992. Influence of soil moisture on root rot and wilt of chickpea. Plant Disease Vol. 76, pp. 1259-62.
115. Castro, H.F., Classen A.T., Austin E.E., Norby, R.J., Schadt, C.W., 2010. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology Vol. 76, pp. 999-1007.
116. Henry, H.A.L., 2012. Soil extracellular enzyme dynamics in a changing climate. Soil Biology and Biochemistry Vol. 47, pp. 53-59.
117. Kardol, P., Cregger M.A., Campany C.E., Classen A.T., 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology Vol. 91, pp. 781-767.
118. Blankinship, J.C., Niklaus, P.A., Hungate, B.A., 2011. A meta-analysis of responses of soil biota to global change. Oecologia Vol. 165, pp. 553-565.
119. Scheu, S., Falca, M., 2000. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia Vol. 123, pp. 285-296.
120. Strong, D.T., De Wever, H., Merckx, R., Recous, S., 2004. Spatial location of carbon decomposition in the soil pore system. Eur. J. Soil Sci. Vol. 55, pp. 739-750
121. Wright, D.A., Killham, K., Glover, L.A., Prosser, J.I., 1995. Role of pore size location in determining bacterial activity during predation by Protozoa in soil. Appl Environ Microbiol Vol. 61, pp. 3537-3543
122. Sharifi, Z., Safari sinegani, AA., Shariati, S., 2012. Potential of Indigenous Plant Species for the Phytoremediation of Arsenic Contaminated Land in Kurdistan (Iran). Soil and Sediment Contamination an international journal. Vol. 21, pp. 557-573.
123. Kardol, P., Reynolds, W.N., Norby, R.J., Classen, A.T., 2011. Climate change effects on soil microarthropod abundance and community structure. Appl Soil Ecol Vol. 47, pp. 37-44.
124. Aerts, R., 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol. Vol. 94, pp. 713-724.
125. Sinclair, B.J., 2002. Effect of increased temperatures simulating climate change on terrestrial invertebrates on Ross Island, Antarctica. Pedobiologia Vol. 46, pp. 150-160.
126. Lensing, J.R., Wise, D.H., 2007. Impact of changes in rainfall amounts predicted by climate-change models on decomposition in a deciduous forest. Appl. Soil Ecol. Vol. 35, pp. 523-534
127. Keith, D.M., Johnson, E.A., Valeo, C., 2010. Moisture cycles of the forest floor organic layer (F and H layers) during drying. Water Resour Res 46:W07529.
128. Odhiambo, H.O., Ong, C.K., Deans, J.D., Wilson, J, Khan, A.A.H., Sprent, J.I. 2001. Roots, soil water and crop yield: tree crop interactions in a semi-arid agroforestry system in Kenya. Plant Soil Vol. 235, pp. 221-233.