بررسی سلامت حوزه آبخیز تالار با استفاده از چارچوب ارزیابی سلامت آبخیز (WHAF)
محورهای موضوعی : کشاورزی، مرتع داری، آبخیزداری و جنگلداریکاکا شاهدی 1 , بهروز محسنی 2 * , بابک مومنی 3
1 - گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 - هیات علمی گروه مهندسی و فناوری کشاورزی، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران، ایران
3 - گروه مهندسی و فناوری کشاورزی، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران، ایران
کلید واژه: پیوستگی, تالار, استراتژی, آبخیزداری, مدیریت یکپارچه,
چکیده مقاله :
مدیریت یکپارچه آب، زمین و منابع زیستی در یک حوضه، منجر به تأمین آب از منابع آبی موجود در آن حوضه میشود. از اجزای کلیدی استراتژیهای مدیریت این منابع، افزایش حفاظت از آبهای (آبخیزهای) سالم است. همچنین یکی از اساسیترین بخشها در مدیریت پایدار حوزه، آگاهی از سلامت آبخیز میباشد. در این تحقیق، با تقسیمبندی آبخیز تالار به 37 زیرحوضه در محیط جی. آی. اس، شاخص سلامت آبخیز بررسی شد. ابتدا، در هر یک از زیرآبخیزها اقدام به انتخاب معیارهای اصلی و مؤثر در میزان سلامت حوضه شد. با درنظر گرفتن ارتباطات و تعاملات بخشهای تشکیلدهنده هر یک از زیرآبخیزها، شاخص سلامت در پنج بخش ژئومورفولوژی، کیفیت آب، هیدرولوژی، وضعیت زیستی و پیوستگی هیدرولوژیک ارزیابی گردید. زیرآبخیزهای منطقه مورد مطالعه از نظر هر یک از شاخصها اولویتبندی شدند و در پایان نقشه نهایی سلامت از ترکیب تمامی شاخصها بهدست آمد. نتایج نشان داد که زیرآبخیز شماره 34 با دارابودن امتیاز 66/71 نسبت به سایر، حداکثر امتیاز سلامت و زیرآبخیز شماره 26 با امتیاز 79/40 حداقل امتیاز سلامت را بهخود اختصاص داد. نتایج بررسی وضعیت سلامتِ زیرآبخیزها نیز نشان داد، تعداد 24 زیرحوضه در طبقه 40-60 و در حد متوسط و بقیه (تعداد 13 زیرحوضه) در طبقه 80-60 و دارای سلامت زیاد هستند. نتایج پارامترهای ارزیابی سلامت آبخیز برای هر جزء سلامت میتواند برای پیشبرد فرآیند برنامهریزی اصلی آبخیزداری در مقیاس حوضه بر مبنای اهداف مدیریتی خاص مورد استفاده قرار گیرد. همچنین با ترکیب هر یک از پارامترهای فرعی دیگر در آبخیز تالار میتوان اولویت مناطق را بهلحاظ سلامت حوضه تعیین کرد.
Integrated management of water, land and biological resources in a watershed leads to an assured water supply from water resources of that watershed. One of the key components of resource management strategies is to increase the protection of waters (healthy watersheds). Also, one of the most important and basic issues in sustainable management of the watershed is awareness of watershed health. In this study, by dividing the Talar watershed into 37 sub-watersheds in GIS environment, the watershed health index was evaluated. For this purpose, in each of the sub-watersheds, the main and effective criteria in the health of the watershed were selected. Considering the connections and interactions of the constituent parts of each sub-watershed, the health index was evaluated based on five indicators: geomorphology, water quality, hydrology, biological status and hydrological continuity. The sub-watersheds were prioritized according to each of the indicators and at the end, the final health map was obtained from the combination of all indicators. The results showed that sub-watershed No. 34 with a score of 71.66 compared to the others had the maximum health score and sub-watershed No. 26 with a score of 40.79 had the minimum health score. The health status of the sub-watersheds also showed that 24 sub-watersheds are in the 40-60 class and in the average level and the rest (13 sub-watersheds) are in the 80-60 class and have high health. The results of watershed health assessment parameters for each health component can be used to advance the main watershed management planning process at the watershed scale based on specific management objectives. Also, by combining any of the other sub-parameters in the Talar watershed, the priority of the areas in terms of watershed health can be determined.
1. Ahn S R, Kim S J. 2019. Assessment of watershed health, vulnerability and resilience for determining protection and restoration Priorities. Environmental Modelling & Software, 122: 103926 pp. doi:https://doi.org/10.1016/j.envsoft.2017.03.014.
2. Ahn S R, Kim, S J. 2017. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology. Hydrology and Earth System Sciences, 21: 5583–5602. doi:https://doi.org/10.5194/hess-21-5583-2017.
3. Bahmany H, Ataei I, Moradmand Jalali A. 2014. Compression of Tree Species Indices in the Darabkola Forest, Mazandaran. Journal of Environmental Science and Technology (JEST), 15 (4): 55-64. https://jest.srbiau.ac.ir/article_2563.html?lang=en. (In Persian).
4. Alizadeh A. 2009. Principles of applied hydrology. 26th ed., Emam Reza University, Mashhad, Iran, 941 pp (In Persian).
5. Dai Q, Liu G, Xue Sh, Lan X, Zhai Sh, Tian J, Wang G. 2007. Health diagnoses of ecosystems subject to a typical erosion environment in Zhifanggou watershed, north-west China, Front of Forestry China, 2(3): 241-250. doi:https://doi.org/10.1007/s11461-007-0040-1.
6. Diebel M, Fedora M, Cogswell S, Ohanley J R. 2014. Effects of road crossing on habitat connectivity for stream- resident fish. River Res. Applic, 31 (10): 1251-1261. doi:https://doi.org/ 10.1002/rra.2822.
7. EPA (United States Environment Protection Agency). 2011. Healthy Watersheds Initiative, National Framework and Action Plan, EPA 841 -R-11-005.
8. EPA (United States Environment Protection Agency). 2012. Identifying and protecting Healthy Watersheds: Concepts, Assessments and Management Approaches, EPA 841-B-11-002g/
9. EPA (United States Environment Protection Agency). 2014. Wisconsin Integrated Assessment of Watershed Health, A Report on the status and Vulnerability of watershed Health in Wisconsin, EPA 841-R-14-001.
10. Fallah M, Mohammadi M, Kavian A. 2015. Prioritization of Sub-watershedsusing Morphometric and LandUse change Analysis. Ecohydrology, 2 (3): 261-274. doi:https://doi.org/ 10.22059/ije.2015.57296. (In Persian).
11. Haghighi Khomami M, Tajaddod M J, Ravanbakhsh M, Jamalzad F. 2021. FallahVegetation classification based on wetland index using object based classification of satellite images (Case study: Anzali wetland). Journal of RS and GIS for Natural Resources, 12 (3): 1-17http://girs.iaubushehr.ac.ir/article_679321.html?lang=en. . (In Persian).
12. Homauonfar V, Khaledi-Darvishan A V, Sadeghi S H. 2016. Effects of Soil Preparation for Sadecual Managem Laboratorial Erosion Studies on Surface Runoff. Journal of Watershed Management Research, 7(1): 60-68 pp. doi:https://doi.org/10.29252/jwmr.7.14.68. (In Persian).
13. Isabel D A, Ferreira V, Graca M. 2012. The performance of biological indicators in assessing the ecological state of streams with varying catchment urbanization levels in Coimbra, Portugal, Limnetica. 31(1): 141-154. doi:https://doi.org/10.23818/limn.31.13.
14. Jat M K, Khare D, Garge K, Shankar V. 2009. Remote Sensing and GIS-based assessment of urbanization and degradation of watershed health. Urban Water Journal, 6(3): 251-263. doi:https://doi.org/ 10.1080/15730620801971920.
15. Khorooshi S, Mostafazadeh R, Esmali Ouri A, Mostafazadeh R. 2017. Spatiotemporal assessment of the hydrologic river health index variations in Ardabil Province Watersheds. Water Resources Management in Natural Ecosystems, 4 (2): 379-393. doi:https://doi.org/10.22059/ije.2017.61475. (In Persian).
16. Minnesota Department of Natural Resources (DNR). 2021. https://gisdata.mn.gov/dataset/env-watershed-health-assessment.
17. Momenian P, Nazarnejhad H A, Miryaghoubzadeh M H, Mostafazadeh R. 2018. Assessment and Prioritizing of Subwatersheds Based on Watershed Health Scores (Case Study: Ghotorchay, Khoy, West Azerbaijan). Journal of Watershed Management Research, 9 (17): 1-13. doi:https://doi.org/ 10.29252/jwmr.9.17.1. (In Persian).
18. Natural Resources and Watershed Management Organization. 2020. Hydrology report of the Talar watershed, Mazandaran province. (In Persian).
19. Nerkar S S, Tamhankar A J, Johansson E, Lundburg C S. 2013. Improvement in health and empowerment of families as a result of watershed management in a tribal area in India-a qualitative study. International Health and Human Rights, 13(42): 1-12. doi:https://doi.org/ 10.1186/1472-698x-13-42.
20. Sanchez G M, Nejadhashemi A P. Zhang Z, Marquart-Pyatt S, Habron G, Shortridge A. 2015. Linking watershed-scale stream health and socioeconomic indicators with spatial clustering and structural equation modeling. Environmental Modelling & Software, 70, 113–127. doi:https://doi.org/ 10.1016/j.envsoft.2015.04.012.
21. Sebari S, Safari O, Farashi A. 2017. Rivers health assessment using bio indicators, The International Conference 4th Environmental Planning and Management, Faculty of Environment, Tehran University Environmental, 9 pp. https://profdoc.um.ac.ir/articles/a/1063108.pdf. (In Persian).
22. Singh A, Dieye A, Finco M. 1999. Assessing Enviromental Condition Major River Basins in Africa as Surrogates for Watershed Health. Ecosystem Health, 5(4): 265-274. doi:https://doi.org/ 10.1046/j.1526-0992.1999.09945.x.
23. Staton S, Dextrase K A, MetcalfeSmith J, Maio J D, Nelson M, Parish J, Kilgour B, Holm E. 2003. Status and trends of Ontario's Sydenham River Ecosystem in relation to aquatic species at risk. Environmental Monitoring and Assessment, 88(1): 283-310. doi:https://doi.org/10.1023/a:1025529409422.
24. White M D, Greer K A. 2006. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Penasquitos Creek, California. Landscape and Urban Planning, 74(2): 125-138. doi:https://doi.org/ 10.1016/j.landurbplan.2004.11.015.
25. Wildhaber, Y S, Bnninger D, Burri K, Alewell C. 2012. Evaluation and application of a portable rainfall simulator on subalpine grassland. Catena, 91: 56-62. doi:https://doi.org/10.1016/j.catena.2011.03.004.
26. Wohl E E, Angermeier P L, Bledsoe B, Kondolf G M, MacDonnell L, Merritt D M, Palmer M A, Poff N L, Tarboton D. 2005. River restoration, Water Resources Research, 41(10): 1-12. doi:https://doi.org/ 10.1029/2005wr003985.
27. Xia J, Zhang Y, Zhao Ch, Bunn S E. 2014. A bio indicator assessment framework of river ecosystem health and the detection of factors influencing the health of the Huai River Basin, China. Journal of Hydrologic Engineering, 19(8): 1-34. doi:https://doi.org/ 10.1061/(asce)he.1943-5584.0000989.
28. Zakerinejad R. 2020. Evaluation of of DEMs to the modeling of the potential of gully erosion using Maxent model (Case study: Semirom catchment in the south of Isfahan Province, Iran). Journal of RS and GIS for Natural Resources, 11 (3): 106- 122.