طبقهبندی مهمترین عوامل طیفی مستخرج از تصاویر لندست 8 در تبیین کربن آلی خاک سطحی مراتع نیمه استپی با استفاده از تحلیل عامل اکتشافی
محورهای موضوعی : کشاورزی، مرتع داری، آبخیزداری و جنگلداریسعیده ناطقی 1 , رستم خلیفه زاده 2 * , مهشید سوری 3 , مرتضی خداقلی 4
1 - استادیار پژوهشی، بخش تحقیقات مرتع، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
2 - دکتری علوم مرتع، بخش تحقیقات مرتع، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
3 - استادیار پژوهشی، بخش تحقیقات مرتع، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
4 - دانشیار پژوهشی، بخش تحقیقات مرتع، مؤسسه تحقیقات جنگل ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
کلید واژه: مرتع آساران, سنجشازدور, رنگ خاک, کربن آلی, مرتع لزور,
چکیده مقاله :
پیشینه و هدف کربن آلی خاک در اکوسیستم های مرتعی از کارکردهای متنوعی همچون افزایش حاصلخیزی خاک، کنترل فرسایش، افزایش نفوذپذیری آب در خاک و کاهش اثرات گازهای گلخانه ای برخوردار است. ازاینرو یک شاخص کلیدی در تعیین سلامت خاک محسوب می شود که تمامی ویژگی های فیزیکی، شیمیایی و بیولوژیکی خاک را تحت تأثیر خود قرار می دهد. وسعت زیاد مراتع کشور، استفاده از روش های سنتی در برآورد کربن آلی خاک را با چالش جدی مواجه می کند. در چنین شرایطی استفاده از قابلیت های دورسنجی می تواند بهعنوان گزینه ای مناسب برای پایش کربن آلی خاک مراتع کشور مطرح باشد. پژوهش حاضر باهدف تعیین مهمترین عوامل طیفی تأثیرگذار بر کربن آلی در افق سطحی خاک در دو مرتع ییلاقی انجام شد.مواد و روش هاپژوهش حاضر در دو مرتع ییلاقی لزور و آساران انجام شد. مرتع لزور به مساحت 8150 هکتار و ارتفاع متوسط 2875 متر در محدودة طول های شرقی 52.514 تا 52.694 درجه و عرض های شمالی 35.855 تا 35.934درجه در استان تهران و مرتع آساران به مساحت 5642 هکتار و ارتفاع متوسط 2465 متر در محدودة طول های شرقی 53.265 تا 53.392درجه و عرض های شمالی 35.804 تا 35.882درجه در استان سمنان واقعشده است. در این تحقیق از اطلاعات سنجندة OLI ماهواره لندست 8 استفاده شد. پس از انجام عملیات پیش پردازش تصاویر ماهواره ای مناطق موردمطالعه، لایه های اطلاعاتی بازتابش بالای اتمسفر باندهای 2 تا 7 همراه با متغیرهای آلبیدوی سطح، شاخص رس، شاخص کربنات، شاخص اندازه ذرات، NDVI، شاخص های روشنایی، سبزینگی و رطوبت تبدیل تسلدکپ محاسبه شد. در هر یک از مناطق موردنظر، با استفاده از نقشه مدل رقومی ارتفاعی (DEM)، نقشه های شیب، جهت و طبقات ارتفاعی تهیه شد و از تلفیق سه لایه اخیر با یکدیگر، نقشه واحدهای همگن نمونه برداری حاصل گردید. نمونه برداری از خاک، با استفاده از روش نمونه برداری تصادفی طبقهبندیشده انجام شد. بدینصورت که، در هر یک از واحدهای همگن با توجه به سطح آن، به شیوه تصادفی، چند نمونه خاک از عمق صفر تا 20 سانتی متری برداشت شد و میزان کربن آلی نمونه ها با استفاده از روش والکلی- بلاک اندازه گیری شد.نتایج و بحثنتایج این تحقیق نشان داد متغیرهای طیفی مقادیر بازتابش بالای اتمسفر باندهای 2 تا 7 همراه با متغیرهای آلبیدوی سطح، شاخص رس، NDVI، شاخص های روشنایی، سبزینگی و رطوبت تبدیل تسلدکپ، همبستگی معنی داری با کربن آلی خاکدارند (0.01>p). همچنین نتایج تحلیل عاملی به روش تجزیة مؤلفه های اصلی (PCA) با مقادیر ویژه بزرگتر از یک نشان داد کل واریانس تجمعی تبیین شده بوسیلة 12 متغیر مذکور، برابر91.74درصد است که این میزان واریانس بوسیلة دو عامل توضیح داده شد. عامل اول (رنگ خاک)، 76.6 درصد واریانس و عامل دوم (پوشش گیاهی و بافت خاک)، 15.14 درصد واریانس را تبیین کردند.نتیجه گیری نتایج این پژوهش مؤید وجود ارتباط معنی دار کربن آلی خاک سطحی با عوامل طیفی مستخرج از داده های سنجندة OLI لندست 8 در مراتع نیمه استپی موردمطالعه است. با توجه به وسعت زیاد مراتع ایران، استفاده از روش های سنتی در برآورد کربن آلی خاک به دلیل نیاز بهصرف وقت و هزینه زیاد، امکان پذیر نیست و در چنین شرایطی استفاده از قابلیت های دورسنجی می تواند بهعنوان گزینه ای مناسب برای پایش کربن آلی خاک مراتع کشور مطرح باشد.
Background and ObjectiveSoil organic carbon in rangeland ecosystems has a variety of functions such as increasing soil fertility, controlling erosion, increasing soil water permeability and, reducing the effects of greenhouse gases. Therefore, it is a key indicator in determining soil health that affects all physical, chemical, and biological properties of soil. The large area of the country's rangelands causes a serious challenge to the use of traditional methods in estimating soil organic carbon. In such situations, the use of remote sensing capabilities can be considered as a suitable option for monitoring the organic carbon of the country's rangeland soils. The aim of this study was to determine the most important spectral factors affecting topsoil organic carbon in two summer rangelands. Materials and Methods This research was carried out in two summer rangelands of Lazour and Asaran. The first rangeland (Lazour) with an area of 8150 hectares and an average height of 2875 meters is located in the range of eastern longitudes 52.514 to 52.694 degrees and northern latitudes 35.855 to 35.934 degrees in Tehran province. The second Rangeland (Asaran) with an area of 5642 hectares and an average height of 2465 meters is located in the range of eastern longitudes 53.265 to 53.392 degrees and northern latitudes 35.804 to 35.882 degrees in Semnan province. In this research, the data of the OLI sensor of the Landsat 8 satellite were used. After pre-processing satellite imagery of the studied areas, Top of Atmosphere (TOA) reflectance layers of bands 2 to 7 along with the variables of surface albedo, Clay index, Carbonate index, Grain Size index, NDVI, brightness, greenness, and wetness index of Tasseled cap transformation were calculated. In each of the target areas, using Digital Elevation Model (DEM) maps, the slope, aspect, and hypsometric maps were prepared and by combining the last three layers with each other, a map of homogeneous sampling units was obtained. Soil sampling was performed using the stratified-random sampling pattern. In this way, in each of the homogeneous units, according to its area, several soil samples were randomly taken from a depth of zero to 20 cm and the amount of organic carbon of the samples was measured using the Walkley-Black method. Results and Discussion The results of this study showed that the spectral variables of Top of Atmosphere (TOA) reflectance layers of bands 2 to 7 along with the variables of surface albedo, Clay index, NDVI, brightness, greenness, and wetness index of Tasseled cap transformation have a significant correlation with topsoil organic carbon (p < 0.01). Also, the results of factor analysis by principal component analysis (PCA) with eigenvalues greater than one showed that the total cumulative variance explained by the 12 variables is 91.74%, which was explained by two factors. The first factor (soil color) explained 76.6% of the variance and the second factor (vegetation and soil texture) explained 15.14% of the variance. Conclusion The results of this study confirm the existence of a significant relationship between topsoil organic carbon and spectral factors extracted from Landsat 8 OLI sensor data in semi-steppe rangelands. Because of the large area of rangelands in Iran, the use of traditional methods in estimating soil organic carbon is not possible due to the need to spend a lot of time and money. And in such situations, the use of Remote sensing (RS) capabilities can be considered as a suitable option for monitoring the topsoil organic carbon in the rangelands.
Abbas Nejad B, Khajedin SJ. 2014. Effect of urban reforestation on carbon sequestration in arid soils using remote sensing technology. Journal of RS and GIS for Natural Resources, 5(2): 75-88. http://girs.iaubushehr.ac.ir/article_516644_516640.html?lang=en. (In Persian).
Arun M, Deepak K, Sananda K, Surajit M, Sandip M, Anirban M. 2017. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Science, 20(1): 61-70. doi:https://doi.org/10.1016/j.ejrs.2016.06.004.
Baig MHA, Zhang L, Shuai T, Tong Q. 2014. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5(5): 423-431. doi:https://doi.org/10.1080/2150704X.2014.915434.
Bangroo SA, Najar GR, Ephraim A, Phuong NT. 2020. Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas. Catena, 193: 104632. doi:https://doi.org/10.1016/j.catena.2020.104632.
Boettinger JL, Ramsey RD, Bodily JM, Cole NJ, Kienast-Brown S, Nield SJ, Saunders AM, Stum AK. 2008. Landsat Spectral Data for Digital Soil Mapping. In: Hartemink AE, McBratney A, Mendonça-Santos MdL (eds) Digital Soil Mapping with Limited Data. Springer Netherlands, Dordrecht, pp 193-202. https://doi.org/110.1007/1978-1001-4020-8592-1005_1016.
David JB, Keith DS, Markus GW, M, Thomas GR. 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132(3): 273-290. doi:https://doi.org/10.1016/j.geoderma.2005.04.025.
Emadi M, Taghizadeh-Mehrjardi R, Cherati A, Danesh M, Mosavi A, Scholten T. 2020. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing, 12(14): 2234. doi:https://doi.org/10.3390/rs12142234.
Escadafal R, Michel-Claude G, Dominique C. 1989. Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data. Remote Sensing of Environment, 27(1): 37-46. doi:https://doi.org/10.1016/0034-4257(89)90035-7.
Fathololoumi S, Vaezi A, Alavipanah SK, Ghorbani A. 2020. Modeling Soil Organic Carbon Variations Using Remote Sensing Indices in Ardabil Balikhli Chay Watershed. Iranian Journal of Soil and Water Research, 51(9): 2417-2429. doi:https://doi.org/10.22059/IJSWR.2020.299509.668542. (In Persian).
Hartemink A, McSweeney K. 2014. Soil Carbon. Springer pub, 506 p.
Howard MC. 2016. A review of exploratory factor analysis decisions and overview of current practices: What we are doing and how can we improve? International Journal of Human-Computer Interaction, 32(1): 51-62. doi:https://doi.org/10.1080/10447318.2015.1087664.
Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423-436. doi:https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
Kasel S, Singh S, Sanders GJ, Bennett LT. 2011. Species-specific effects of native trees on soil organic carbon in biodiverse plantings across north-central Victoria, Australia. Geoderma, 161(1): 95-106. doi:https://doi.org/10.1016/j.geoderma.2010.12.014.
Kopačková V, Jelének J, Koucká L, Fárová K, Pikl M. 2018. Modelling soil Organic Carbon and mineral composition using reflectance and emissivity data. In: EGU General Assembly Conference Abstracts. p 14745.
Liang S, Chad JS, Andrew LR, Hongliang F, Mingzhen C, Charles LW, Craig STD, Raymond H. 2003. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sensing of Environment, 84(1): 25-41. doi:https://doi.org/10.1016/S0034-4257(02)00068-8.
Liu Q, Liu G, Huang C, Xie C. 2015. Comparison of tasselled cap transformations based on the selective bands of Landsat 8 OLI TOA reflectance images. International Journal of Remote Sensing, 36(2): 417-441. doi:https://doi.org/10.1080/01431161.2014.995274.
Mahmoudi S, Hakimian M. 2006. Fundamentals of soil sciences. Tehran university press. 700 p. (In Persian).
Mahmoudzadeh H, Matinfar HR, Taghizadeh-Mehrjardi R, Kerry R. 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional, 21: e00260. doi:https://doi.org/10.1016/j.geodrs.2020.e00260.
McCoy RM. 2005. Field methods in remote sensing. Guilford Press. New York. 159 p.
Mohan S, Arumugam N. 1996. Relative importance of meteorological variables in evapotranspiration: Factor analysis approach. Water Resources Management, 10(1): 1-20. doi:https://doi.org/10.1007/BF00698808.
Piccini C, Alessandro M, Rosa F. 2014. Estimation of soil organic matter by geostatistical methods: Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators, 36: 301-314. doi:https://doi.org/10.1016/j.ecolind.2013.08.009.
Santanu M, Bhowmik T, Mishra U, Paul N. 2020. Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data. Geocarto International: 1-17. doi:https://doi.org/10.1080/10106049.2020.1815864.
United States Geological Survey (USGS). 2016. Landsat 8 (L8) data users Handbook. version 2.0. 106 p.
Wu C, Wu J, Luo Y, Zhang L, DeGloria SD. 2009. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73(4): 1202-1208. doi:https://doi.org/10.2136/sssaj2008.0045.
Xiao J, Shen Y, Tateishi R, Bayaer W. 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27(12): 2411-2422. doi:https://doi.org/10.1080/01431160600554363.
Zhang Y, Guo L, Chen Y, Shi T, Luo M, Ju Q, Zhang H, Wang S. 2019. Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11(14): 1683. doi:https://doi.org/10.3390/rs11141683.
Zhou T, Yajun G, Jie C, Mengmeng L, Dagmar H, Angela L. 2020. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecological Indicators, 114: 106288. doi:https://doi.org/10.1016/j.ecolind.2020.106288.
_||_Abbas Nejad B, Khajedin SJ. 2014. Effect of urban reforestation on carbon sequestration in arid soils using remote sensing technology. Journal of RS and GIS for Natural Resources, 5(2): 75-88. http://girs.iaubushehr.ac.ir/article_516644_516640.html?lang=en. (In Persian).
Arun M, Deepak K, Sananda K, Surajit M, Sandip M, Anirban M. 2017. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. The Egyptian Journal of Remote Sensing and Space Science, 20(1): 61-70. doi:https://doi.org/10.1016/j.ejrs.2016.06.004.
Baig MHA, Zhang L, Shuai T, Tong Q. 2014. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sensing Letters, 5(5): 423-431. doi:https://doi.org/10.1080/2150704X.2014.915434.
Bangroo SA, Najar GR, Ephraim A, Phuong NT. 2020. Application of predictor variables in spatial quantification of soil organic carbon and total nitrogen using regression kriging in the North Kashmir forest Himalayas. Catena, 193: 104632. doi:https://doi.org/10.1016/j.catena.2020.104632.
Boettinger JL, Ramsey RD, Bodily JM, Cole NJ, Kienast-Brown S, Nield SJ, Saunders AM, Stum AK. 2008. Landsat Spectral Data for Digital Soil Mapping. In: Hartemink AE, McBratney A, Mendonça-Santos MdL (eds) Digital Soil Mapping with Limited Data. Springer Netherlands, Dordrecht, pp 193-202. https://doi.org/110.1007/1978-1001-4020-8592-1005_1016.
David JB, Keith DS, Markus GW, M, Thomas GR. 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132(3): 273-290. doi:https://doi.org/10.1016/j.geoderma.2005.04.025.
Emadi M, Taghizadeh-Mehrjardi R, Cherati A, Danesh M, Mosavi A, Scholten T. 2020. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing, 12(14): 2234. doi:https://doi.org/10.3390/rs12142234.
Escadafal R, Michel-Claude G, Dominique C. 1989. Munsell soil color and soil reflectance in the visible spectral bands of landsat MSS and TM data. Remote Sensing of Environment, 27(1): 37-46. doi:https://doi.org/10.1016/0034-4257(89)90035-7.
Fathololoumi S, Vaezi A, Alavipanah SK, Ghorbani A. 2020. Modeling Soil Organic Carbon Variations Using Remote Sensing Indices in Ardabil Balikhli Chay Watershed. Iranian Journal of Soil and Water Research, 51(9): 2417-2429. doi:https://doi.org/10.22059/IJSWR.2020.299509.668542. (In Persian).
Hartemink A, McSweeney K. 2014. Soil Carbon. Springer pub, 506 p.
Howard MC. 2016. A review of exploratory factor analysis decisions and overview of current practices: What we are doing and how can we improve? International Journal of Human-Computer Interaction, 32(1): 51-62. doi:https://doi.org/10.1080/10447318.2015.1087664.
Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423-436. doi:https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
Kasel S, Singh S, Sanders GJ, Bennett LT. 2011. Species-specific effects of native trees on soil organic carbon in biodiverse plantings across north-central Victoria, Australia. Geoderma, 161(1): 95-106. doi:https://doi.org/10.1016/j.geoderma.2010.12.014.
Kopačková V, Jelének J, Koucká L, Fárová K, Pikl M. 2018. Modelling soil Organic Carbon and mineral composition using reflectance and emissivity data. In: EGU General Assembly Conference Abstracts. p 14745.
Liang S, Chad JS, Andrew LR, Hongliang F, Mingzhen C, Charles LW, Craig STD, Raymond H. 2003. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sensing of Environment, 84(1): 25-41. doi:https://doi.org/10.1016/S0034-4257(02)00068-8.
Liu Q, Liu G, Huang C, Xie C. 2015. Comparison of tasselled cap transformations based on the selective bands of Landsat 8 OLI TOA reflectance images. International Journal of Remote Sensing, 36(2): 417-441. doi:https://doi.org/10.1080/01431161.2014.995274.
Mahmoudi S, Hakimian M. 2006. Fundamentals of soil sciences. Tehran university press. 700 p. (In Persian).
Mahmoudzadeh H, Matinfar HR, Taghizadeh-Mehrjardi R, Kerry R. 2020. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Regional, 21: e00260. doi:https://doi.org/10.1016/j.geodrs.2020.e00260.
McCoy RM. 2005. Field methods in remote sensing. Guilford Press. New York. 159 p.
Mohan S, Arumugam N. 1996. Relative importance of meteorological variables in evapotranspiration: Factor analysis approach. Water Resources Management, 10(1): 1-20. doi:https://doi.org/10.1007/BF00698808.
Piccini C, Alessandro M, Rosa F. 2014. Estimation of soil organic matter by geostatistical methods: Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators, 36: 301-314. doi:https://doi.org/10.1016/j.ecolind.2013.08.009.
Santanu M, Bhowmik T, Mishra U, Paul N. 2020. Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data. Geocarto International: 1-17. doi:https://doi.org/10.1080/10106049.2020.1815864.
United States Geological Survey (USGS). 2016. Landsat 8 (L8) data users Handbook. version 2.0. 106 p.
Wu C, Wu J, Luo Y, Zhang L, DeGloria SD. 2009. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73(4): 1202-1208. doi:https://doi.org/10.2136/sssaj2008.0045.
Xiao J, Shen Y, Tateishi R, Bayaer W. 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27(12): 2411-2422. doi:https://doi.org/10.1080/01431160600554363.
Zhang Y, Guo L, Chen Y, Shi T, Luo M, Ju Q, Zhang H, Wang S. 2019. Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sensing, 11(14): 1683. doi:https://doi.org/10.3390/rs11141683.
Zhou T, Yajun G, Jie C, Mengmeng L, Dagmar H, Angela L. 2020. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecological Indicators, 114: 106288. doi:https://doi.org/10.1016/j.ecolind.2020.106288.