ارائه مدل ارزیابی عملکرد بانکهای بورسی کشور با رهیافت داده کاوی
محورهای موضوعی : مهندسی مالیالهام آدخ 1 , عارفه فدوی اصغری 2 * , محمد ابراهیم پورزرندی 3
1 - گروه مدیریت صنعتی دانشکده مدیریت، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه مدیریت صنعتی دانشکده مدیریت، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه مدیریت صنعتی دانشکده مدیریت، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: ارزیابی عملکرد, نسبت های مالی, داده کاوی, بانکهای پذیرفته شده در بورس اوراق بهادار,
چکیده مقاله :
با رشد بانکهای خصوصی و مؤسسات مالی و اعتباری،رقابت بین آنها به منظور ارائه خدمات بهتر افزایش یافته است. با توجه به اهمیت موضوع،تدوین یک الگوی جامع و کامل برای ارزیابی بانکها ضروری به نظر می رسد. هر سازمان برای آگاهی از نقاط قوت و ضعف خود به ویژه در محیط های پویا نیازمند ارزیابی عملکرد می باشد. موضوع ارزیابی عملکرد آنقدر مورد توجه است که حتی در این باره صاحبنظران مدیریت معتقدند: "آنچه را که نتوان ارزیابی نمود، نمی توان مدیریت کرد".بنابراین بانک ها نیز همانند سایرسازمان ها در ایران برای ارائه خدمات متنوع تر و سریع ترو همچنین توسعه خود ، نیازمند ارزیابی عملکرد می باشند.[6]هدف اصلی این مقاله ارائه مدلی به منظور ارزیابی عملکرد بانکهای بورسی کشور با استفاده از روشهای داده کاوی می باشد. در این پژوهش، 4 مدل داده کاوی درخت تصمیم C5.0، درخت تصمیم C4.5، الگوریتم بیز و جنگل تصادفی، به منظور ارزیابی عملکرد بانک های پذیرفته شده در بورس اوراق بهادار تهران پیاده سازی و با یکدیگر مقایسه می گردند. بدین منظور نمونه ای مشتمل بر 28 نسبت مالی شامل نسبت های سودآوری، نقدینگی، حوزه کیفیت مدیریت ، حوزه کیفیت دارایی و کفایت سرمایه در 18 بانک بورس اوراق بهادار تهران درفاصله بین سالهای 1393 تا 1396 به عنوان متغیرهای مستقل و عملکرد بانکها درسه دسته قابل قبول، غیرقابل قبول ومتوسط به عنوان متغیر وابسته انتخاب گردیدند. نتایج حاکی از آن است که در بین کلیه مدلها درخت تصمیم C5.0 با صحت 94.4% بهترین مدل ارائه شده در این پژوهش می باشد.
With the growth of private banks , financial and credit institutions, competition for better services has increased. Given the importance of the issue, it is necessary to develop a comprehensive model for evaluating banks. Every organization needs to evaluate its performance to understand its strengths and weaknesses, especially in dynamic environments. The issue of performance appraisal is so widespread that even management experts say: "What cannot be evaluated cannot be managed".Banks, like other organizations in Iran, need performance evaluation to provide more diverse and faster services as well as their development. [6]This study aimed to present a model to evaluate the performance of banks listed in Tehran Stock Exchange using data mining approach. In this research, four data mining models of decision tree C5.0, decision tree C4.5, Naive Bayes classifier, and random forest were implemented and compared to evaluat the performance of banks. To this end, 28 financial ratios (e.g., profitability ratios, liquidity, quality management, asset quality, and capital adequacy) in 18 banks of Tehran Stock Exchange during 2014-2017 were selected as independent variables. In addition, the performance of banks in three categories of acceptable, unacceptable, and moderate was selected as the dependent variable of the study. According to the results, the decision tree C5.0 with the accuracy of 94.4% was the most efficient model proposed in this research.
اسماعیلی مهدی. داده کاوی مفاهیم و تکنیک ها.ویراست سوم .انتشارات نیازدانش،1393.
البرزی محمود،محمد پورزرندی محمد ابراهیم، خان بابایی محمد. به کارگیری الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبار سنجی مشتریان بانکها. نشریه مدیریت فناوری اطلاعات، دوره 2، شماره 4، بهارو تابستان 1389: 38-23.
باقرپور و لاشانی محمد علی ،ساعی محمد جواد ، مشکانی علی ، باقری مصطفی. پیش بینی گزارش حسابرس مستقل در ایران ، رویکرد داده کاوی. مجله تحقیقات حسابداری دوره 19 ، سال 1391 :134-150.
حجازی رضوان،محمدی شاپور،اصلانی زهرا، آقاجانی مجید.پیش بینی مدیریت سود با استفاده از شبکه عصبی و درخت تصمیم در شرکت های پذیرفته شده در بورس اوراق بهادار تهران. مجله بررسی های حسابداری و حسابرسی دانشکده مدیریت دانشگاه تهران، دوره 19، شماره 2، تابستان 1391 : 46-31.
صادقی حجت الله، غنی ورزنه فریبا. پیش بینی عملکرد مالی شرکتهای بورسی اوارق بهادار با رویکرد الگوریتم درخت تصمیم با استفاده از ROE به عنوان متغیر پیش بین.رشت، اولین کنفرانس بین المللی حسابداران و مدیریت هزاره سوم، دی ماه 1394 .
صالحی سیدمرتضی،نیکوکارغلامحسین،محمدی ابوالفضل،تقی نتاج غلامحسین.طراحی الگوی ارزیابی عملکرد شعب بانک ها و مؤسسات مالی و اعتباری(مورد مطالعه: بانک قوامین). مجله دانشکده مدیریت دانشگاه تهران. دوره 3،شماره 7.بهار90 : 142-127 .
غضنفری مهدی، علیزاده سمیه، تیمورپور بابک. داده کاوی و کشف دانش.چاپ پنجم. انتشارات دانشگاه علم و صنعت،1395.
مهدوی غلامحسین، قربانی اصغر.بررسی مقایسه ای نقش شاخص های نوین و سنتی نقدینگی در ارزیابی عملکرد مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران. مجله پژوهش های حسابداری مالی دانشگاه اصفهان، دوره 4، شماره 1، بهار 1391: 88-67.
مهرانی ساسان، مهرانی کاوه،کرمی غلامرضا . استفاده از اطلاعات تاریخی مالی و غیرمالی جهت تفکیک شرکتهای موفق از ناموفق .مجله بررسی های حسابداری و حسابرسی، دوره 38، سال 1383: 77-92.
میرغفوری سید حبیب اله، شفیعی رودپشتی میثم، ندافی غزاله. ارزیابی عملکرد مالی با رویکرد تحلیل خاکستری(مورد: شرکت های مخابرات استانی).فصلنامه علمی پژوهشی دانش مالی تحلیل اوارق بهادار ، شماره 16، زمستان 1391: 76-61.
Aitkenhead, M. J., A co-evolving decision tree classification method, Journal of Expert Systems with Applications,2008,34(1), P.18-25.
Chattamvelli ,R., Data mining Algorithm, Alpha science, 2011. (Book)
Delen, D., Kuzey, C., and Uyar, A., Measuring firm performance using financial ratios: A Decision tree approach, Journal of Expert System with Application 2013,40(10),P.3970-3983.
Gupta, G.K., Introduction to Data Miningwith Case Studies, Prentice - Hall of India, second edition , 2011. (Book)
Hand, D. J., Mannila, H., and Smyth, P., Principles of data mining. MIT pressCambridge, Massachusetts London England,2001.(Book)
Koyuncugil,A.S., and ozgulbas , N. Financial early Warning system model and data mining application for risk detection , Journal of Expert Systems with Applications ,2012,39(6) , P.6238-6253.
Larose, D. T., Discovering Knowledge in Data, an Introduction to Data Mining, New Jersey, Wiley,2005. (Book)
Porzan, M., Cristina, A. and Danescu, T., The role of the risk management and of the activities of internal control in supplying useful information through the accounting and fiscal reports, Journal of Procedia and Finance, 2012, 3, P.1099-1106.
Witten, I., Frank, E., Practical Machine Learning Tools and Techniques ,Morgan Kaufmann Series in Data Management Systems, United Kingdom, third edition, 2011 .(Book)
Yeh, C., Chi, D. j., and Lin, Y. R., Going-Concern prediction UsingHybrid Random Forests and Rough Set Approach, Journal of Information Sciences, 2014, 254, P.98-110.
_||_Ismaili Mehdi. Data mining concepts and techniques. Third edition. Niazdanash Publications, 2013.
Albarzi Mahmoud, Mohammad Pourzarandi Mohammad Ibrahim, Khan Babaei Mohammad. Application of genetic algorithm in optimization of decision trees for validation of bank customers. Journal of Information Technology Management, Volume 2, Number 4, Spring Summer 2019: 23-38.
Bagharpour and Lashani Mohammad Ali, Sai Mohammad Javad, Meshkani Ali, Bagheri Mustafa. Prediction of independent auditor's report in Iran, data mining approach. Journal of Accounting Research, Volume 19, 1391:134-150.
Hijazi Rizvan, Mohammadi Shapour, Aslani Zahra, Aghajani Majid. Prediction of profit management using neural network and decision tree in companies admitted to Tehran Stock Exchange. Journal of Accounting and Auditing, Faculty of Management, University of Tehran, Volume 19, Number 2, Summer 2013: 31-46.
Sadeghi Hojatullah, Ghani Varzaneh Fariba. Forecasting the financial performance of stock exchange companies with the decision tree algorithm approach using ROE as a predictor variable. Rasht, the first international conference of accountants and management of the third millennium, December 2014.
Salehi Syed Morteza, Nikokar Gholamhossein, Mohammadi Abolfazl, Taghi Netaj Gholamhossein. Designing a model for evaluating the performance of bank branches and financial and credit institutions (case study: Qavamin Bank). Tehran University Management Faculty Magazine. Volume 3, Number 7. Spring 90: 142-127.
Ghazanfari Mehdi, Alizadeh Samieh, Timurpour Babak. Data mining and knowledge discovery. Fifth edition. Publications of University of Science and Technology, 2015.
Mahdavi Gholamhossein, Ghorbani Asghar. A comparative study of the role of modern and traditional liquidity indicators in evaluating the financial performance of companies admitted to the Tehran Stock Exchange. Financial Accounting Research Journal of Isfahan University, Volume 4, Number 1, Spring 2013: 67-88.
Mehrani Sasan, Mehrani Kaveh, Karmi Gholamreza. Using historical financial and non-financial information to distinguish successful from unsuccessful companies. Journal of Accounting and Auditing, Volume 38, Year 2013: 77-92.
Mirghfouri Seyyed Habib Elah, Shafii Rudpashti Maitham, Nadafi Ghazaleh. Evaluation of financial performance with the gray analysis approach (case: provincial telecommunication companies). Quarterly Journal of Financial Knowledge of Securities Analysis, No. 16, Winter 2013: 61-76.
Aitkenhead, M. J., A co-evolving decision tree classification method, Journal of Expert Systems with Applications,2008,34(1), P.18-25.
Chattamvelli, R., Data mining Algorithm, Alpha science, 2011. (Book)
Delen, D., Kuzey, C., and Uyar, A., Measuring firm performance using financial ratios: A decision tree approach, Journal of Expert System with Application 2013,40(10), P.3970-3983.
Gupta, G.K., Introduction to Data Mining with Case Studies, Prentice - Hall of India, second edition, 2011. (Book)
Hand, D. J., Mannila, H., and Smyth, P., Principles of data mining. MIT press Cambridge, Massachusetts London England, 2001. (Book)
Koyuncugil, A.S., and Ozgulbas, N. Financial early warning system model and data mining application for risk detection, Journal of Expert Systems with Applications, 2012, 39(6), P.6238-6253.
Larose, D. T., Discovering Knowledge in Data, an Introduction to Data Mining, New Jersey, Wiley, 2005. (book)
Porzan, M., Cristina, A. and Danescu, T., The role of the risk management and of the activities of internal control in supplying useful information through the accounting and fiscal reports, Journal of Procedia and Finance, 2012, 3, P .1099-1106.
Witten, I., Frank, E., Practical Machine Learning Tools and Techniques, Morgan Kaufmann Series in Data Management Systems, United Kingdom, third edition, 2011. (Book)
Yeh, C., Chi, D. j., and Lin, Y. R., Going-Concern prediction Using Hybrid Random Forests and Rough Set Approach, Journal of Information Sciences, 2014, 254, P.98-110.