طراحی مدل مدیریت ریسک کیفیت در زنجیره تامین صنعت خودرو با رویکرد آمیخته
محورهای موضوعی : مدیریتعلی سوری 1 , علی اصغر عیوضی حشمت 2 , رسول ثانوی فرد 3
1 - گروه مدیریت بازرگانی، واحد قم، دانشگاه آزاد اسلامی، قم، ایران
2 - گروه مدیریت، دانشگاه پیام نور، تهران، ایران
3 - گروه برنامه ریزی علوم اداری و مدیریت، واحد قم، دانشگاه آزاد اسلامی، قم، ایران
کلید واژه: صنعت خودرو, زنجیره تامین, مدیریت ریسک کیفیت,
چکیده مقاله :
هدف پژوهش حاضر،طراحی مدل مدیریت ریسک کیفیت در زنجیره تامین صنعت خودرو است که با رویکرد آمیخته انجام شده است.در بخش کیفی، به منظور شناسایی عوامل موثر و استخراج مدل مفهومی از روش دلفی استفاده شد.در بخش کمی نیز به منظور اولویتبندی شاخصها از تحلیل سلسلهمراتبی دادهها بهره گرفتهشد.نمونه آماری شامل 16 نفر از خبرگان دانشگاهی و صنعت خودروسازی بودند که به صورت قضاوتی و گلولهبرفی انتخاب گردیدند.گردآوری دادهها از طریق پرسشنامه صورت پذیرفت.طبق نتایج بخش دلفی، 70 شاخص فرعی نهایی شده در تحقیق، در 14 سرشاخه و 3 زمینه اصلی شامل ریسک کیفیت بر اساس:قابلیتهای زنجیره تامین،بخشهای مختلف زنجیره تامین و مراحل کار تقسیمبندی میشوند.بعد از انجام فرآیند تحلیل سلسلهمراتبی دادهها در سه سطح، 14 شاخص اول پژوهش که بیشترین اوزان را به دست آوردندبه عنوان بااهمیتترین شاخصها شناسایی شدند.بدین ترتیب،بهرهمندی از دانش لازم برای توسعه بیشتر شایستگیهای تکنولوژیکی بر اساس نیازهای متغیر،عدم بروزرسانی فرآیندهای کاری و توسعه قابلیتهای منابع انسانی و نیروی کار بیتجربه و آموزشندیده مهمترین شاخصهای ریسک کیفی زنجیره تامین خودرو به حساب میآیند.این تحقیق با شناسایی انواع ریسک های کیفیت درطول فرآیند و زنجیره تامین در صنعت خودرو به متولیان صنعت خودرو درتدوین استراتژی های صحیح مدیریت ریسک ومدیریت کیفیت زنجیره تامین یاری می رساند.
The purpose of this study is to design a quality risk management model in the supply chain of the automotive industry. This research was conducted with a mixed approach. In the qualitative part, Delphi method was used to identify effective factors and derive a conceptual model. In the quantitative part, hierarchical data analysis was used to prioritize the indicators. The statistical sample includes 16 academic and automotive industry experts who were selected by judgmental sampling and snowball sampling. The data collection tool includes a questionnaire According to the results of the Delphi, the 70 sub-indices finalized in the research are divided into 14 main branches and 3 main fields including quality risk based on: supply chain capabilities, different parts of the supply chain and work stages. After performing the process of hierarchical analysis of data at three levels, the first 14 indicators of the research, which obtained the most weights, were identified as the most important indicators.By identifying the types of quality risks during the process and supply chain in the automotive industry, this research helps the managers of the automotive industry in developing the correct strategies for risk management and quality management of the supply chain.
_|1) حاجی کریمی، آرش و شکیبی، حسین؛ (1399)، نقش سازوکارهای کنترل داخلی و مدیریت ریسک کیفیت زنجیره تامین در بهبود عملکرد مالی، نشریه علمی پژوهش های راهبردی بودجه و مالی، 1(3)، 151-179
2) حسین زاده، مصطفی و قیدر خلجانی، جعفر (1392). مروری بر روش های شناسایی ریسک های طراحی محصول. فصلنامه ی علمی ترویجی مدیریت استاندارد و کیفیت، 25-18.
3) رحمانی، عبداله؛ وزیری نژاد، رضا؛ احمدی نیا، حسن؛ رضاییان، محسن، (1399)، مبانی روش شناختی و کاربردهای روش دلفی: یک مرور روایی، مرور روایی، 19، 538-515
4) صادقی مقدم، محمدرضا، کریمی، تورج و بندسی، سحر. (1397). ارزیابی ریسک های زنجیره تامین خدمات با رویکرد تئوری مجموعه های راف (مورد مطالعه: شرکت های ارایه دهنده خدمات پرداخت به بانک ها). پژوهش های مدیریت در ایران، 22 (1)، 69-94.
5) Azizsafaei, M., Sarwar, D., Fassam, L., Khandan, R., Hosseinian-Far, A. (2021). A Critical Overview of Food Supply Chain Risk Management. In: Jahankhani, H., Jamal, A., Lawson, S. (eds) Cybersecurity, Privacy and Freedom Protection in the Connected World. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi. org/10. 1007/978-3-030-68534-8_26
6) Bai, Libiao., Shi, Chunming., Guo, Yuntao., Du, Qiang., Huang, Youdan., (2018), Quality Risk Evaluation of the Food Supply Chain Using a Fuzzy Comprehensive Evaluation Model and Failure Mode, Effects, and Criticality Analysis, Journal of Food Quality , (1):1-19, DOI: 10. 1155/2018/2637075
7) Bortey, L., Edwards, D. J., Roberts, C., Rillie, I., (2022), A Review of Safety Risk Theories and Models and the Development of a Digital Highway Construction Safety Risk Model. Digital, 2, 206–223. https://doi. org/10. 3390/ digital2020013
8) Dias, G. C., Hernandez, C. T., & Oliveira, U. R. (2020). Supply chain risk management and risk ranking in the automotive industry. Gestão & Produção, 27 (1), e3800. https://doi. org/10. 1590/0104-530X3800-20
9) Ghadge, A., Dani, S. and Kalawsky, R. (2012), "Supply chain risk management: present and future scope", The International Journal of Logistics Management, 23 (3), 313-339. https://doi. org/10. 1108/09574091211289200
10) Gray, John V., Roth, Aleda V., Leiblein, Michael J., (2011), Quality risk in offshore manufacturing: Evidence from the pharmaceutical industry, Journal of Operations Management, 29 (7–8), 737-752, https://doi.org/10.1016/j.jom.2011.06.004.
11) Guba, E. G., and Y. S. Lincoln (1982). “Epistemological and Methodological Bases of Naturalistic Inquiry, Educational Communication and Technology Journal, 30 (4), 233-252.
12) Gurtu, Amulya,. Johny. Jestin., ( 2021). Supply Chain Risk Management: Literature Review. Risks 9: 16. https://doi. org/10. 3390/ risks9010016
13) Huang K, Wang J, Zhang J., (2023), Automotive Supply Chain Disruption Risk Management: A Visualization Analysis Based on Bibliometric. Processes. 11 (3):710. https://doi. org/10. 3390/pr11030710
14) Humphrey-Murto, S., deWit, M. (2019). The Delphi method—more research please. Journal of clinical epidemiology, 106, 136-139.
15) Monroe, R. W., Teets, J. M.., Richard Martin, P., ( 2014). "Supply chain risk management: an analysis of sources of risk and mitigation strategies," International Journal of Applied Management Science, Inderscience Enterprises Ltd, 6 (1), 4-21.
16) Prashar, A. and Aggarwal, S. (2020), "Modeling enablers of supply chain quality risk management: a grey-DEMATEL approach", The TQM Journal, 32 (5), 1059-1076. https://doi. org/10. 1108/TQM-05-2019-0132
17) Skulmoski, G. J., Hartman, F. T., Krahn, J. (2007). The Delphi method for graduate research. Journal of Information Technology Education: Research, 6 (1), 1-21.
18) Song, Yaping., Wei, Zhanguo., (2022), Quality Risk Management Algorithm for Cold Storage Construction Based on Bayesian Networks, Hindawi, Computational Intelligence and Neuroscience, https://doi. org/10. 1155/2022/6830090
19) Tse, Y. K. (2012), Supply Chain Quality Risk Management: An Empirical Study of its Dimensions and Impact on Firm Performance, Ph. D. thesis, University of Nottingham, Nottingham, UK.
20) Tse, Y. K. and Zhang, M. and Tan, K. H. and Pawar, K. and Fernandes, K. (2018), Managing quality risk in supply chain to drive firm's performance: the roles of control mechanisms. ', Journal of business research. 97. 291-303. https://doi. org/10. 1016/j. jbusres. 2018. 01. 029
21) Tse, Ying Kei and Tan, Kim Hua., (2012), Managing product quality risk and visibility in multi-layer supply chain. International Journal of Production Economics 139 (1) , 49-57. http://dx. doi. org/10. 1016/j. ijpe. 2011. 10. 031
22) Tse., Ying Kei., Zhang, Minhao., Zeng, Wenjuan., Ma, Jie., (2021), Perception of supply chain quality risk: Understanding the moderation role of supply market thinness, Journal of Business Research, 122, 822-834,https://doi. org/10. 1016/j. jbusres. 2020. 07. 003.
23) Wiedenmann, M. and Größler, A. (2021), "Supply risk identification in manufacturing supply networks", The International Journal of Logistics Management, 32 (2), 650-672. https://doi. org/10. 1108/IJLM-02-2020-0081
24) Yan, B., Chen, Z. and Kang, H. (2017), "Coordination model of quality risk control of the aquatic supply chain based on principal-agent theory", Supply Chain Management, 22 (5), 393-410. https://doi. org/10. 1108/SCM-10-2016-0375
25) Zhang, S., Ye, K., Wang, M. (2021). A simple consistent Bayes factor for testing the Kendall rank correlation coefficient. arXiv preprint arXiv:2105. 00364.
26) Zhu, Shiping, " Supply Chain Risk Management in Automotive Industry " (2018). Electronic Theses and Dissertations. 7611. https://scholar. uwindsor. ca/etd/7611
|_